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[sing model

Probability distribution p; : {£1}" - R,
where log i, , = H is quadratic

Parameters: interaction matrix /] € R™*", external field h € R"

H/ " (o) = %(0,]0 ) +({h,0)=2,c;)ijoio; + X; hio;

Jh
Ilj,h(U) = 7 (HZ (0))




[sing model

Probability distribution p; : {£1}" - R,

where log i, , = H is quadratic
Parameters: interaction matrix /] € R™*", external field h € R"

HIM (o) = ~(o,]o ) + (h,0 ) = T Jijoi0; + T hio

-

Sherrington-Kirkpatrick (SK):
J is (scaled) GOE matrix i.e.

Vi <jiJj=Jij~ \/%N(OJ)
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[sing model

Probability distribution with density function:
uxexp(H):{£1}"* - R,

H is quadratic
H/M (o) = %(XJX )+ (hx)=2.i)ijoio; + X hio;

Motivation:

° PhYSiCS [Ising-Lenz’1920-1925, Sherrington-Kirkpatrick’1975, Parisi’1979]

* Bayesian inference in high-dim regression [pam17, LM19, MV21,Mw24]
* Spiked matrix model from PCA pono1),

e Stochastic block model [sin11,paM17,AMM+18]
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Motivation: Bayesian inference in high-dim
regression [DAM17, LM19, MV21,MW24]

Given observation y, = X0O + Gaussian(0,a%]),
the Bayesian estimator for ©® with prior Uniform({+1}") is
m(0) « exp(

|lyo—xel|’

202

) = Ising with ] = XX /0% and h = y; X /20°

Bayesian approach requires sampling from this Ising model.
Closely related to the SK case




Motivation: PhYSiCS [Ising-Lenz’1920-1925, Sherrington-
Kirkpatrick’1975, Parisi’1979,...]

U, p: distribution over
charged (4)

configurations of
particles,

where matrix | represents
the interaction between
particles

Sampling = Simulation



Glauber, a natural algorithm for sampling

Target: u: {+1}" - R,

Start at arbitrary o

Repeat for “some” steps:

* Choose arandom location i and resample g; ~ u(.|o_;)

We obtain a sequence of random variables:
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Goal: bounding the mixing time

tmix(€) =

ind;, (Xt ) <
Target: H:{il}n_)RZO . arginln TV( uu) € )

Start at arbitrary o
Repeat for “some” steps:
* Choose arandom location i and resample g; ~ u(.|o_;)

We obtain a sequence of random variables:
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Fast mixing = no sparse cut in meta-graph

Meta graph:

e VerticesV = {+1}"

* Vertex weight: u(o)

* Edge weight: P[c — o]




Fast mixing = no sparse cut in meta-graph

Meta graph:

e VerticesV = {+1}"

* Vertex weight: u(o)

* Edge weight: P[c — o]

~

For intuition:
] “big” < 3 sparse cut
] “small” & NO sparse cut
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A sharp phase transition

J=BJ©

Cmix = 0,8 (nlogn) 1 tmix = €xp(n)
0 p

C
Near-linear and
optimally fast

00

4+
{ Exponentially slow

4 )
Conj: no poly-time sampler

(proved* in special cases)

- J




Example: mean-field/Curies-Weiss model

J=F1
Cmix = 0,8 (nlogn) tmix = €xp(n)
B 0 1,8 +o;)

C
Near-linear and Exponentially slow
optimally fast P g

U ((£1}") UA+D, (=D")




[sing model: u/"*(x) = exp(% (x,Jx)+(h,x))

O(nlogn) |]l_ | <1 0
[Dobrushin’68,Marton’15] SRk |
exp(0(vn)) Amax(/) = Amin()) <1 0
[Bauerschmidt- Bodineau’19]
0(n?) Amax() — Amin(J) < 1 arbitrary
[Eldan-Koehler-Zertouni'21]
O(nlogn) Amax() — Amin(J) < 1 arbitrary

[Anari-Jain-Koehler-Pham-V.21a]
[Chen-Eldan’22]: shorter proof

exp(Q2(n)) Amax() = Amin(J) > 1 0
No polytime algorithm [Kun’23,
Galanis-Kalavakis-Kandiros’24] /\

[ Tight example: ] = %1 17, Aax(J) = ¢, Ain(J) = 0 ]




SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O 2 ) ii.d.

"n
0 (nz) [Eldan-Koehler-Zertouni’21] f<1/4 arbitrary
O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 arbitrary

T

[ Amax () = 28, Anin() = =28 = Amax () — Amin(J) < 48 < 1 ]




SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O,%Z) i.i.d.

0, (le) [Eldan-Koehler-Zertouni’21] p<1/4 All external fields

O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 All external fields

T

{ Amax () = 28, Anin() ~ =28 = Amax () — Amin(J) < 48 < 1 ]

[ Conjecture: Glauber mixes fast for § < 1 J




SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O,%Z) i.i.d.

Sampling time

0, (nz) [Eldan-Koehler-Zertouni’21] f<1/4 All external fields
O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 All external fields
0(n?) B <1 0

but very weak guarantee: W, (1, ii) = o(n)
|[El Alaoui-Montanari-Sellke’22,
Brennecke-Xu-Yau’23, Celentano’23]

tmix,Glauber = exp(Q(n)) g >1 0
No polytime “stable” algorithm [AMS’22]

_—

-
SDE-based sampler + marginal estimation by AMP

— large error. Much weaker than d (i, [1) < achievable by

poly(n)

\_ Glauber/Markov chains




SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O,%Z) i.i.d.

0, (nz) [Eldan-Koehler-Zertouni’21] f<1/4 All external fields

O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 All external fields

O (n log n) [Anari-Koehler-V.24] p < 0.295 All external fields



SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O,%Z) i.i.d.

0, (le) [Eldan-Koehler-Zertouni’21] f<1/4 All external fields
O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 All external fields
O (n log n) [Anari-Koehler-V.24] f < 0.295 All external fields

‘ Open: 0.295 < f<17? }




Results for related models

 Langevin dynamics in O(N) model (replacing {+1} with Sy)
u: Sy = Ry, u(o) < exp(Qicifij{oi, 05) + Xi(hi, 0))




Results for related models

 Langevin dynamics in O(N) model (replacing {+1} with Sy)
* Anti-ferromagnetic Ising on random d-regular graphs: ] = —fA(G)

with G ~ G4, B = O(1/Vd)

Correct order on d.
Open: getting the correct constant?




Results for related models

 Langevin dynamics in O(N) model (replacing {+1} with Sy)
* Anti-ferromagnetic Ising on random d-regular graphs
* Global version of Kawasaki dynamics for fixed-magnetization Ising

--concurrent with [Bauerschmidt-Bordineau-Dagallier23] N

[ [sing restricted to {0 € {+1}"| ).0; = k} J




Results for related models

 Langevin dynamics in O(N) model (replacing {+1} with Sy)
* Anti-ferromagnetic Ising on random d-regular graphs

* Global version of Kawasaki dynamics for fixed-magnetization Ising
--concurrent with [Bauerschmidt-Bordineau-Dagallier23]

 P-spin model: log u(o) is degree-p polynomial (using different
technique—(ajkpv24], but can we unify the two techniques?)




Proof technique



Goal: bounding mixing time of Glauber

Common method to bound mixing time:
* Quantifying progress in each time-step

* More precisely, compare dist(X*+1, u) with dist(X¢, u) for
some measure of distance between distributions

* Hard to directly work with dist = d;y, instead, work with
dist € {Dy;, x*}

1%




Entropy/variance contraction &
connection to mixing time

Variance contraction Entropy contraction
« Vv: x?(vP||uP) < (1 - PXZ))(Z(VH,U) * VYv: Dg (VP||uP) < (1 — pgr)Dg (v||u)
* Trix < p);f} log (min u(x))™1 = p);zln * Thix < pii, loglog (minu(x))~" = py; logn
* Py2 = PKL
» Easier to bound but worse control on * Tight control on mixing time
mixing time +concentration bounds...
4 )

Entropic independence-[AJKPV21]:
Lossless boost variance contraction

into KL. contraction
\_ J

For Glauber on Ising u/": {+1}" — R, we expect: p,2 = pg;, =

S|




{Decomposition & induction 1

\

[+ 0Oldidea A
Decompose into subspaces
Often loose bounds

How to decompose?

Solve the (easier)
problem on subspace

W /
Decomposition into
chains on smaller space

Large state space
Q= {£1}"




{Decomposition & induction

/ Spectral /entropic ind/[CE22]’s
stochastic localization
Solve the (easier) * Canonical decomposition

problem on subspace « Main difference: allow
* Tight/optimal bound

Large state space
Q= {£1}"

&

Decomposition into
chains on smaller space



Decomposition

Spectral /entropic independence

Decomposition via conditioning/pinning:
i=E; [l = o))

Linear-tilt stochastic localization

Decomposition into “soft pinning”:

u=E~Eg lig]

Reduces entropy/variance contraction of

to ?
[ALOV19,AL020,CLV21,22,AJKPV21,.]:
Yes, if

Reduces entropy/variance contraction of
to [ip?
[CE22]:
Yes, if
But only for quadratic Hamiltonian
1.e. Ising

4




What we have learned

Bounded covariance = entropy contraction & mixing time bound
via reducing to simpler systems
* Intuition: zero covariance < product distribution
= optimal mixing
* Formalized in [AJKPV21-22,CE22,AKV24]




What we have learned

Bounded covariance = entropy contraction & mixing time bound
via reducing to simpler systems
* Intuition: zero covariance < product distribution
= optimal mixing
* Formalized in [AJKPV21-22,CE22,AKV24]

* Note for experts: bounding covariance of the target/stationary distribution
is not enough.




Our contribution:
a new way to bound the covariance

Given [CE22] decomposition:
u=Eqg.rlilg]
We can bound Cov(u) using Cov(jig)!

A generalization of Oppenheim’s trickle-down theorem, which uses
the decomposition via pinning.




Decomposition via

stochastic/linear-tilt localization
|Chen-Eldan’22]



Decomposition via stochastic localization
|Chen-Eldan’22]

dpe

Sequence of densities (u;), Fy = ”

Driving matrices: C
FO — 1
dF.(x) = F(x){(x — mean(y,), CdB;)

Decomposition:
U=t = Er,[pt]

F,(x) x exp({C?y,, x) — %(x, C?x)),
fory, = tX*+ C71B, for X* ~




Decomposition via stochastic localization
|Chen-Eldan’22]

Sequence of densities (u;), Fy = % Application:
Driving matrices: C H *  Up:Ising modelw\ithinteraction
| matrix / = 0
FO =1 _ 11/2 =
dF:(x) = F(x)(x — mean(u;), CdBy) =] (=) plh = yl+alh

o * He = 'ulsmg
Decomposition:

H=uy = Eg|p]

F,(x) x exp({C?y,, x) — %(x, C?x)),
fory, = tX*+ C71B, for X* ~




Decomposition via stochastic localization
|Chen-Eldan’22]

dpe
du

Application:
* Up: Ising model with interaction
matrixJ = 0

Sequence of densities (u¢), F; =

Driving matrices: C
FO — 1

« C =J1/2
dF;(x) = F;(x){x — mean(u;), CdB;) _ (1-t)J.he
N * U= “Ising
Decomposition: e T=1

U= = Eg,[u]

uy(x) < exp({C?y, + h, x)):
» product distribution
» easy to bound X; = Cov(uy)

F,(x) x exp({C?y,, x) — %(x, C?x)), because X, is diagonal
fory, = tX*+ C71B, for X* ~




Bounded covariance implies entropy contraction

/

Thmi[ce22]: If Vt, w:

(1—t)],ht+W
Jeov (i)

J,h

pKL (PGlauber: l’llsing) 2
= tyix< exp ([1/1] ,J vedt) O(nlogn)

< Yt then
opP

exp (~|/1] ., vedt)

n

~




Bounding covariance using trickle-down



Trickle down for stochastic localization
|Anari-Koehler-V’'24|

dUo

Sequence of densities (u;), Fy = ”

Driving matrices: C
FO — 1
dF(x) = F(x){(x — mean(u,), CdB;)

-
Thm 2 [AcV24]: for 0 <t < 1: Z;: = cov(u)

v, = E[3,|F,] + f E[S,C25,|F,] ds

o

Bounding cov(u;) = bounding cov(u;) J




Trickle down for stochastic localization
|Anari-Koehler-V’'24|

dUo

Sequence of densities (u;), Fy = ”

Driving matrices: C
FO — 1
dF(x) = F(x){(x — mean(u,), CdB;)

-
Thm 2 [AcV24]: for 0 <t < 1: Z;: = cov(u)

v, = E[3,|F,] + f E[S,C25,|F,] ds

o

By Ito calculus

d¥, = —%£C?32dt + martingale



Taking everything together

4 )
Thm: Let ,ugw) = ,u?sf?ﬁgw
. h
if vw: Cov (,uiw)) < Athen pki (PGlauber;ﬂljSing) = q(A)/n

. )

ﬂssume] z 0 (1_||]||0P) \

J,h
pKL (PGlauber; :ulging) 2

n

Naive bound: Cov (,ugw)) < I =

< O(nlogn)
1= “jl ‘OP Recover

Tightif/ =117t [AJKPV21]

tmix




To do better for SK

e
Thm: Let ,ugw) = ?;?ﬁ;w
. h
if vw: Cov (,uiw)) < Athen pki (PGlauber;ﬂljSing) = q(A)/n
.

2
1o: Ising model with J(©) ~ GOE (%),] =|](O) + |/1ml-|n(](0))|l z0

PSD transformation

¢ X;:=Cov (,uiw)) is a diagonal matrix
* Exploit the structure of | to bound the diagonal entries of X,

J has large diagonal entries ]




To do better for SK

4 )
Thm: Let ,ugw) = ,ufs’,?ﬁgw
. h
if vw: Cov (,uiw)) < Athen pki (PGlauber;ﬂljSing) = q(A)/n

. )

2
1o: Ising model with J(©) ~ GOE (%),] =JO 4+ | 1nin(JO) = 0
e Y.:=Cov (,ugw)) is a diagonal matrix

* Exploit the structure of ] to bound the diagonal entries of X

* (Zl)i,i = 1 — tanh? (6), 6;={;,X")+ fli + /Jii gJ) Lem15,58[AKv24]:

- ' E[tanh?(6,)] = r(J;;)
* I,h
[ X"~ lulsing




Main theorem for Ising

/Thm?)

L)

h
|cov (,u{sing)”op < (L), A = dpax D) = Anin(D) 1 = —15

[AKV24]:

1n(2) = r(72) + f g (y)dy
0

A
h
PKL (PGlauberhuljsing) = €exp (JCI'n (z) dZ) /n
0
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) Relevant curve for SK model .
Z = Amax(]) — Amin(]) =44 =1.18 L0.8
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Figure 1: logq,(z) from Theorem 3 plotted using numerical integration in Mathematica for
n=0,01,...,0.9,1. The curve for n = 0 was, before this work, the best known bound for all values
of n in the Ismg model; it asymptotes toTatT:_i which is tight due to the phase transition in the
Curie-Weiss model [E1106]. For n = 0.5 the function log g, asymptotes to oo at z slightly above 1.18

and for n = 1.0 it asymptotes around 1.40.




SK model: u/*(x) = exp(% (x,Jx)+hx),]Jji=]ij~N (O,%Z) i.i.d.

0, (le) [Eldan-Koehler-Zertouni’21] p<1/4 All external fields
O (n log n) [Anari-Jain-Koehler-Pham-V.21a] f<1/4 All external fields
O (n log n) [Anari-Koehler-V.24] f < 0.295 All external fields
Unix,Glauber = exp(ﬂ(n)) :8 > 1 0
No polytime “stable” algorithm [AMS’22]
4 R " Open Problem 2:
Open Problem 1: Stronger evidence for
0.295 < B<17? hardness when > 1

- J - J
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