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Ising model

Probability distribution 𝜇𝐽,ℎ: ±1 𝑛 → ℝ≥0

where log 𝜇𝐽,ℎ ≡ 𝐻 is quadratic

Parameters: interaction matrix 𝐽 ∈ ℝ𝑛×𝑛, external field h ∈ ℝ𝑛

  𝐻𝐽,ℎ 𝜎 =
1

2
𝜎, 𝐽𝜎 + ℎ, 𝜎 = σ𝑖≤𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 + σ𝑖 ℎ𝑖𝜎𝑖 

𝜇𝐽,ℎ 𝜎 =
exp 𝐻𝐽,ℎ 𝜎

𝑍



Ising model

Probability distribution 𝜇𝐽,ℎ: ±1 𝑛 → ℝ≥0

where log 𝜇𝐽,ℎ ≡ 𝐻 is quadratic

Parameters: interaction matrix 𝐽 ∈ ℝ𝑛×𝑛, external field h ∈ ℝ𝑛

  𝐻𝐽,ℎ 𝜎 =
1

2
𝜎, 𝐽𝜎 + ℎ, 𝜎 = σ𝑖≤𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 + σ𝑖 ℎ𝑖𝜎𝑖 

Sherrington-Kirkpatrick (SK): 
J is (scaled) GOE matrix i.e.

∀𝑖 < 𝑗:  𝐽𝑗𝑖= 𝐽𝑖𝑗 ∼
𝛽

𝑛
𝒩(0,1) 



Ising model

Probability distribution with density function:
𝜇 ∝ exp(𝐻): ±1 𝑛 → ℝ≥0

𝐻 is quadratic

  𝐻𝐽,ℎ 𝜎 =
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 = σ𝑖≤𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 + σ𝑖 ℎ𝑖𝜎𝑖  

Motivation: 
• Physics  [Ising-Lenz’1920-1925, Sherrington-Kirkpatrick’1975, Parisi’1979]

• Bayesian inference in high-dim regression [DAM17, LM19, MV21,MW24] 

• Spiked matrix model from PCA [Joh01],

• Stochastic block model [Sin11,DAM17,AMM+18]



Ising model

Probability distribution with density function:
𝜇 ∝ exp(𝐻): ±1 𝑛 → ℝ≥0

𝐻 is quadratic

  𝐻𝐽,ℎ 𝜎 =
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 = σ𝑖≤𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 + σ𝑖 ℎ𝑖𝜎𝑖  

Motivation: 
• Physics  [Ising-Lenz’1920-1925, Sherrington-Kirkpatrick’1975, Parisi’1979,…]

• Bayesian inference in high-dim regression [DAM17, LM19, MV21,MW24] 

• Spiked matrix model from PCA [Joh01],

• Stochastic block model [Sin11,DAM17,AMM+18]

Computer 
Science



Motivation: Bayesian inference in high-dim 
regression [DAM17, LM19, MV21,MW24] 

Given observation 𝑦0 = 𝑋Θ + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎2𝐼),
the Bayesian estimator for Θ with prior Uniform( ±1 n) is 

𝜋 𝜃 ∝ exp −
𝑦0−𝑋Θ

2

2𝜎2 = Ising with 𝐽 = 𝑋𝑋𝑇/𝜎2  and ℎ = 𝑦0
𝑇𝑋/2𝜎2

Bayesian approach requires sampling from this Ising model.
Closely related to the SK case



Motivation: Physics [Ising-Lenz’1920-1925, Sherrington-
Kirkpatrick’1975, Parisi’1979,…]

𝜇𝐽,ℎ: distribution over 
charged (±) 
configurations of 
particles, 
where matrix 𝐽 represents 
the interaction between 
particles

Sampling ≡ Simulation

+

+

−



Target: 𝜇: ±1 𝑛 → ℝ≥0

Start at arbitrary 𝜎
Repeat for “some” steps:
• Choose a random location i and resample 𝜎𝑖 ∼ 𝜇(. |𝜎−𝑖)

We obtain a sequence of random variables:

Glauber, a natural algorithm for sampling

𝑋0 −→ 𝑋1 −→ 𝑋2 →  … → 𝑿𝑻 ≈ 𝝁

Output1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0.3

0.7

0.1

0.9

0.4

0.6



Target: 𝜇: ±1 𝑛 → ℝ≥0

Start at arbitrary 𝜎
Repeat for “some” steps:
• Choose a random location i and resample 𝜎𝑖 ∼ 𝜇(. |𝜎−𝑖)

We obtain a sequence of random variables:

Goal: bounding the mixing time

𝑋0 −→ 𝑋1 −→ 𝑋2 →  … → 𝑿𝑻 ≈ 𝝁

Output1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

𝑡𝑚𝑖𝑥(𝜖) =
argmin

t
𝑑𝑇𝑉 𝑋𝑡 , 𝜇 ≤ 𝜖 



𝑋0

𝑋1

Fast mixing ≡ no sparse cut in meta-graph

Meta graph: 
• Vertices 𝑉 = ±1 𝑛

• Vertex weight: 𝜇(𝜎)
• Edge weight: ℙ[𝜎 → 𝜎′]



𝑋0

𝑋1

Fast mixing ≡ no sparse cut in meta-graph

Meta graph: 
• Vertices 𝑉 = ±1 𝑛

• Vertex weight: 𝜇(𝜎)
• Edge weight: ℙ[𝜎 → 𝜎′]

For intuition:
J “big”  ∃ sparse cut
J “small”  NO sparse cut



A sharp phase transition

𝐽 = 𝛽 𝐽(0)

𝛽 
0

𝑡𝑚𝑖𝑥 = 𝑂𝛽(𝑛 log 𝑛)

+∞

𝑡𝑚𝑖𝑥 = exp(𝑛)

Near-linear and 
optimally fast

Exponentially slow

Conj: no poly-time sampler
(proved* in special cases)

𝛽𝑐



Example: mean-field/Curies-Weiss model

𝐽 = 𝛽 𝟏

𝛽 
0

𝑡𝑚𝑖𝑥 = 𝑂𝛽(𝑛 log 𝑛)

+∞

𝑡𝑚𝑖𝑥 = exp(𝑛)

Near-linear and 
optimally fast

Exponentially slow

𝛽𝑐

𝑈 ( ±1 𝑛) 𝑈( +1 𝑛, −1 𝑛 )



Ising model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 )

Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛 log 𝑛) 
[Dobrushin’68,Marton’15]

𝐽𝑖,.
1

< 1 0

exp(𝑂( 𝑛))
[Bauerschmidt- Bodineau’19]

𝜆max 𝐽 − 𝜆min 𝐽 < 1 0

𝑂(𝑛2)
[Eldan-Koehler-Zertouni’21]

𝜆max 𝐽 − 𝜆min 𝐽 < 1 arbitrary

𝑂(𝑛 log 𝑛)
[Anari-Jain-Koehler-Pham-V.’21a]

[Chen-Eldan’22]: shorter proof

𝜆max 𝐽 − 𝜆min 𝐽 < 1 arbitrary

exp(Ω 𝑛 )
No polytime algorithm [Kun’23, 
Galanis-Kalavakis-Kandiros’24]

𝜆max 𝐽 − 𝜆min 𝐽 > 1 0

Tight example: 𝐽 =
𝑐

𝑛
1 1𝑇 , 𝜆max 𝐽 = 𝑐, 𝜆min 𝐽 = 0



SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.

Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 arbitrary

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 arbitrary

𝜆max 𝐽 ≈ 2𝛽, 𝜆min 𝐽 ≈ −2𝛽 ⇒ 𝜆max 𝐽 − 𝜆min 𝐽 ≤ 4𝛽 ≤ 1



SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.

Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 All external fields

𝜆max 𝐽 ≈ 2𝛽, 𝜆min 𝐽 ≈ −2𝛽 ⇒ 𝜆max 𝐽 − 𝜆min 𝐽 ≤ 4𝛽 < 1

Conjecture: Glauber mixes fast for  β < 1



SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.

Sampling time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 All external fields

𝑂(𝑛2)
 but very weak guarantee: 𝑊2(𝜇, ො𝜇) = 𝑜(𝑛)

[El Alaoui-Montanari-Sellke’22,
Brennecke-Xu-Yau’23, Celentano’23]

𝛽 < 1 0

t𝑚𝑖𝑥,Glauber ≥ exp(Ω 𝑛 ) 
No polytime “stable” algorithm [AMS’22]

𝛽 > 1 0

SDE-based sampler + marginal estimation by AMP

→ large error. Much weaker than 𝑑𝑇𝑉 𝜇, Ƹ𝜇 <
1

𝑝𝑜𝑙𝑦 𝑛
 achievable by 

Glauber/Markov chains



SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.

Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Koehler-V.’24] 𝛽 ≤ 0.295 All external fields



Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Koehler-V.’24] 𝛽 ≤ 0.295 All external fields

Open: 0.295 < 𝛽<1?

SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.



• Langevin dynamics in O(N) model (replacing ±1  with 𝑆𝑁) 

𝜇: 𝑆𝑁
𝑛 → ℝ≥0, 𝜇 𝜎 ∝ exp(σ𝑖≤𝑗 𝐽𝑖𝑗⟨𝜎𝑖 , 𝜎𝑗⟩ + σ𝑖⟨ℎ𝑖 , 𝜎𝑖⟩ )

Results for related models



• Langevin dynamics in O(N) model (replacing ±1  with 𝑆𝑁) 

• Anti-ferromagnetic Ising on random d-regular graphs: 𝐽 = −𝛽𝐴(G) 
with 𝐺 ∼ 𝒢𝑑 , 𝛽 = Θ(1/ 𝑑)

Results for related models

Correct order on 𝑑. 
Open: getting the correct constant? 



• Langevin dynamics in O(N) model (replacing ±1  with 𝑆𝑁) 

• Anti-ferromagnetic Ising on random d-regular graphs

• Global version of Kawasaki dynamics for fixed-magnetization Ising 
--concurrent with [Bauerschmidt-Bordineau-Dagallier23]

Results for related models

Ising restricted to {𝜎 ∈ ±1 𝑛| σ𝜎𝑖 = 𝑘} 



• Langevin dynamics in O(N) model (replacing ±1  with 𝑆𝑁) 

• Anti-ferromagnetic Ising on random d-regular graphs

• Global version of Kawasaki dynamics for fixed-magnetization Ising 
--concurrent with [Bauerschmidt-Bordineau-Dagallier23]

• P-spin model: log 𝜇 𝜎  is degree-p polynomial (using different 
technique—[AJKPV24], but can we unify the two techniques?)

Results for related models



Proof technique



Common method to bound mixing time:

• Quantifying progress in each time-step 

• More precisely, compare 𝑑𝑖𝑠𝑡(𝑋𝑡+1, 𝜇) with 𝑑𝑖𝑠𝑡(𝑋𝑡, 𝜇) for 
some measure of distance between distributions

• Hard to directly work with 𝑑𝑖𝑠𝑡 = d𝑇𝑉, instead, work with 
𝑑𝑖𝑠𝑡 ∈ {𝒟𝐾𝐿, 𝜒2}

𝜒2(𝜈| 𝜇 = 𝑉𝑎𝑟
𝜈

𝜇𝒟𝐾𝐿(𝜈| 𝜇 = 𝐸𝑛𝑡
𝜈

𝜇

Goal: bounding mixing time of Glauber



Variance contraction

• ∀𝜈:  𝜒2(𝜈𝑃| 𝜇𝑃 ≤ 1 − 𝜌𝜒2 𝜒2(𝜈||𝜇)

• 𝑇𝑚𝑖𝑥 ≤ 𝜌𝜒2
−1 log (min 𝜇 𝑥 )−1 ≈ 𝜌𝜒2

−1𝑛

• Easier to bound but worse control on 
mixing time 

Entropy contraction

• ∀𝜈: 𝒟𝐾𝐿(𝜈𝑃| 𝜇𝑃 ≤ 1 − 𝜌𝐾𝐿 𝒟𝐾𝐿(𝜈||𝜇)

• 𝑇𝑚𝑖𝑥 ≤ 𝜌𝐾𝐿
−1 log log  (min 𝜇 𝑥 )−1 ≈ 𝜌𝐾𝐿

−1 log 𝑛

• 𝜌𝜒2 ≥ 𝜌𝐾𝐿

• Tight control on mixing time 

    +concentration bounds…

For Glauber on Ising 𝜇 𝐽,ℎ: ±1 𝑛 → ℝ≥0, we expect: 𝜌𝜒2 ≈ 𝜌𝐾𝐿 ≈
1

𝑛

Entropy/variance contraction & 
connection to mixing time

Entropic independence-[AJKPV21]:
Lossless boost variance contraction 

into KL contraction



Decomposition & induction

Large state space
Ω = ±1 𝑛

Ωa

≡ ±1 𝑛/3

Decomposition into 
chains on smaller space

Solve the (easier) 
problem on subspace

• Old idea
• Decompose into disjoint subspaces
• Often loose bounds
• How to decompose?



Decomposition & induction

Large state space
Ω = ±1 𝑛

Decomposition into 
chains on smaller space

Solve the (easier) 
problem on subspace

Spectral/entropic ind/[CE22]’s 
stochastic localization
• Canonical decomposition
• Main difference: allow overlapping
• Tight/optimal bound

𝜇𝑎

𝜇𝑏



Decomposition

Reduces entropy/variance contraction of 
𝜇 to 𝜇 . 𝑥𝑖 = c ?

[ALOV19,ALO20,CLV21,22,AJKPV21,..]: 
Yes, if 𝐶𝑜𝑣 𝜇 ≼ . .

Spectral/entropic independence
 
Decomposition via conditioning/pinning:

𝜇 = 𝔼𝑖,𝑐[𝜇 . 𝑥𝑖 = 𝑐 ]
Decomposition into “soft pinning”:

𝜇 = 𝔼𝜃∼𝜋[ ෤𝜇𝜃]

Reduces entropy/variance contraction of
 𝜇 to ෤𝜇𝜃?

[CE22]: 
Yes, if 𝐶𝑜𝑣 𝜇 ≼. .

But only for quadratic Hamiltonian 
i.e. Ising 

Linear-tilt stochastic localization 



Bounded covariance ⇒ entropy contraction & mixing time bound

                via reducing to simpler systems

• Intuition: zero covariance ⇔ product distribution 

 ⇒ optimal mixing

• Formalized in [AJKPV21-22,CE22,AKV24]

What we have learned



Bounded covariance ⇒ entropy contraction & mixing time bound

                via reducing to simpler systems

• Intuition: zero covariance ⇔ product distribution 

 ⇒ optimal mixing

• Formalized in [AJKPV21-22,CE22,AKV24]

• Note for experts: bounding covariance of the target/stationary distribution 
is not enough.

What we have learned



Our contribution: 
a new way to bound the covariance

Given [CE22] decomposition:
𝜇 = 𝔼𝜃∼𝜋[ ෤𝜇𝜃]

We can bound Cov(𝜇) using 𝐶𝑜𝑣( ෤𝜇𝜃)!

A generalization of Oppenheim’s trickle-down theorem, which uses 
the decomposition via pinning.

𝜇

෤𝜇𝜃 ෤𝜇𝜃"



Decomposition via 
stochastic/linear-tilt localization 

[Chen-Eldan’22]



Decomposition via stochastic localization
[Chen-Eldan’22]

Sequence of densities (𝜇𝑡), 𝐹𝑡 =
𝑑𝜇𝑡

𝑑𝜇
 

Driving matrices: 𝐶
𝐹0 = 1

𝑑𝐹𝑡 𝑥 = 𝐹𝑡 𝑥 𝑥 − 𝑚𝑒𝑎𝑛 𝜇𝑡 , 𝐶𝑑𝐵𝑡

 
Decomposition:

𝜇 = 𝜇0 = 𝔼ℱ𝑡
𝜇𝑡

 𝐹𝑡 𝑥  ∝ exp( 𝐶2𝑦𝑡 , 𝑥 −
𝑡

2
𝑥, 𝐶2𝑥 ),

 for yt = t X∗ + 𝐶−1𝐵𝑡 for 𝑋∗ ∼ 𝜇0



Decomposition via stochastic localization
[Chen-Eldan’22]

Application: 
•  𝜇0: Ising model with interaction 

matrix 𝐽 ≽ 0
• 𝐶 = 𝐽1/2

• 𝜇𝑡 ≡ 𝜇𝐼sing
1−𝑡 𝐽,ℎ

𝜇 𝐽,ℎ ≡ 𝜇 𝐽+𝛼𝐼,ℎ

Sequence of densities (𝜇𝑡), 𝐹𝑡 =
𝑑𝜇𝑡

𝑑𝜇
 

Driving matrices: 𝐶
𝐹0 = 1

𝑑𝐹𝑡 𝑥 = 𝐹𝑡 𝑥 𝑥 − 𝑚𝑒𝑎𝑛 𝜇𝑡 , 𝐶𝑑𝐵𝑡

 
Decomposition:

𝜇 = 𝜇0 = 𝔼ℱ𝑡
𝜇𝑡

 𝐹𝑡 𝑥  ∝ exp( 𝐶2𝑦𝑡 , 𝑥 −
𝑡

2
𝑥, 𝐶2𝑥 ),

 for yt = t X∗ + 𝐶−1𝐵𝑡 for 𝑋∗ ∼ 𝜇0



Decomposition via stochastic localization
[Chen-Eldan’22]

Application: 
•  𝜇0: Ising model with interaction 

matrix 𝐽 ≽ 0
• 𝐶 = 𝐽1/2

• 𝜇𝑡 ≡ 𝜇𝐼sing
1−𝑡 𝐽,ℎ𝑡

• 𝑇 = 1
• 𝜇1 𝑥 ∝ exp 𝐶2𝑦𝑡 + ℎ, 𝑥 :

➢ product distribution 
➢ easy to bound Σ1 = Cov 𝜇1

because Σ1 is diagonal

Sequence of densities (𝜇𝑡), 𝐹𝑡 =
𝑑𝜇𝑡

𝑑𝜇
 

Driving matrices: 𝐶
𝐹0 = 1

𝑑𝐹𝑡 𝑥 = 𝐹𝑡 𝑥 𝑥 − 𝑚𝑒𝑎𝑛 𝜇𝑡 , 𝐶𝑑𝐵𝑡

 
Decomposition:

𝜇 = 𝜇0 = 𝔼ℱ𝑡
𝜇𝑡

 𝐹𝑡 𝑥  ∝ exp( 𝐶2𝑦𝑡 , 𝑥 −
𝑡

2
𝑥, 𝐶2𝑥 ),

 for yt = t X∗ + 𝐶−1𝐵𝑡 for 𝑋∗ ∼ 𝜇0



Thm[CE22] : If ∀𝑡, 𝑤: cov 𝜇𝐼sing
1−𝑡 𝐽,ℎ𝑡+𝑤

𝑂𝑃
≤ 𝛾𝑡 then

𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥
exp − 𝐽

𝑂𝑃
∫ 𝛾𝑡𝑑𝑡

n

    ⇒ 𝑡𝑚𝑖𝑥≤ exp 𝐽
𝑂𝑃

∫ 𝛾𝑡𝑑𝑡 𝑂(𝑛 log 𝑛)

Bounded covariance implies entropy contraction



Bounding covariance using trickle-down



Trickle down for stochastic localization
[Anari-Koehler-V’24]

Sequence of densities (𝜇𝑡), 𝐹𝑡 =
𝑑𝜇0

𝑑𝜇
 

Driving matrices: 𝐶
𝐹0 = 1

𝑑𝐹𝑡 𝑥 = 𝐹𝑡 𝑥 𝑥 − 𝑚𝑒𝑎𝑛 𝜇𝑡 , 𝐶𝑑𝐵𝑡

 

Bounding cov 𝜇1 ⇒ bounding cov 𝜇𝑡  

Thm 2 [ACV24]: for 0 ≤ 𝑡 ≤ 1: Σ𝑡: = cov 𝜇𝑡

Σ𝑡 = 𝔼 Σ1 ℱ𝑡 + න𝔼[Σ𝑠𝐶2Σ𝑠|ℱ𝑡] 𝑑𝑠



Trickle down for stochastic localization
[Anari-Koehler-V’24]

Sequence of densities (𝜇𝑡), 𝐹𝑡 =
𝑑𝜇0

𝑑𝜇
 

Driving matrices: 𝐶
𝐹0 = 1

𝑑𝐹𝑡 𝑥 = 𝐹𝑡 𝑥 𝑥 − 𝑚𝑒𝑎𝑛 𝜇𝑡 , 𝐶𝑑𝐵𝑡

 

Thm 2 [ACV24]: for 0 ≤ 𝑡 ≤ 1: Σ𝑡: = cov 𝜇𝑡

Σ𝑡 = 𝔼 Σ1 ℱ𝑡 + න𝔼[Σ𝑠𝐶2Σ𝑠|ℱ𝑡] 𝑑𝑠

𝑑Σ𝑡 = −Σ𝑡
2𝐶2Σ𝑡

2𝑑𝑡 + 𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒

By Ito calculus



Taking everything together

Naïve bound: 𝐶𝑜𝑣 𝜇1
(𝑤)

≼ 𝐼

Thm:  Let 𝜇1
(𝑤)

≔ 𝜇𝐼𝑠𝑖𝑛𝑔
0,ℎ1+𝑤

if ∀𝑤:  𝐶𝑜𝑣 𝜇1
(𝑤)

≼ 𝐴 then

𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥
1− 𝐽

𝑂𝑃

𝑛

𝑡𝑚𝑖𝑥 ≤
1

1 − 𝐽
𝑂𝑃

𝑂(𝑛 log 𝑛)

Tight if 𝐽 =
𝑐

𝑛
𝟏𝟏𝑇!

𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥ 𝑞(𝐴)/𝑛

⇒

Recover 
[AJKPV21]

Assume 𝐽 ≽ 0



To do better for SK

• Σ1: = 𝐶𝑜𝑣 𝜇1
(𝑤)

 is a diagonal matrix

• Exploit the structure of J to bound the diagonal entries of Σ1

Thm:  Let 𝜇1
(𝑤)

≔ 𝜇𝐼𝑠𝑖𝑛𝑔
0,ℎ1+𝑤

if ∀𝑤:  𝐶𝑜𝑣 𝜇1
(𝑤)

≼ 𝐴 then 𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥ 𝑞(𝐴)/𝑛

𝜇0: Ising model with 𝐽(0) ∼ 𝐺𝑂𝐸
𝛽2

𝑛
, 𝐽 = 𝐽 0 + |𝜆𝑚𝑖𝑛 𝐽 0 |𝐼 ≽ 0

𝐽 has large diagonal entries

PSD transformation



To do better for SK

• Σ1: = 𝐶𝑜𝑣 𝜇1
(𝑤)

 is a diagonal matrix

• Exploit the structure of J to bound the diagonal entries of Σ1

• (Σ1)i,i = 1 − tanh2 𝜃𝑖 ,  𝜃𝑖 = 𝐽𝑖 , 𝑋∗ + ෨ℎ𝑖 + 𝐽𝑖,𝑖  𝑔)

Thm:  Let 𝜇1
(𝑤)

≔ 𝜇𝐼𝑠𝑖𝑛𝑔
0,ℎ1+𝑤

if ∀𝑤:  𝐶𝑜𝑣 𝜇1
(𝑤)

≼ 𝐴 then 𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥ 𝑞(𝐴)/𝑛

𝜇0: Ising model with 𝐽(0) ∼ 𝐺𝑂𝐸
𝛽2

𝑛
, 𝐽 = 𝐽 0 + |𝜆𝑚𝑖𝑛 𝐽 0 |𝐼 ≽ 0

X∗ ∼ 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,෩ℎ

Lem15,58[AKV24]:
𝔼[tanh2(𝜃𝑖)] ≥ 𝑟(𝐽𝑖,𝑖)



Main theorem for Ising

Thm3[AKV24]: cov 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

𝑂𝑃
≤ 𝑞𝜂 Δ , Δ ≔ 𝜆𝑚𝑎𝑥 𝐽 − 𝜆𝑚𝑖𝑛 𝐽 ), 𝜂: =

1

1+|
𝜆𝑚𝑎𝑥 𝐽

𝜆𝑚𝑖𝑛 𝐽
|

Type equation here.

𝜌𝐾𝐿 𝑃𝐺𝑙𝑎𝑢𝑏𝑒𝑟 , 𝜇𝐼𝑠𝑖𝑛𝑔
𝐽,ℎ

≥ exp න𝑞𝜂 𝑧 𝑑𝑧 /𝑛
Δ

0



Relevant curve for SK model

z ≔ 𝜆𝑚𝑎𝑥 𝐽 − 𝜆𝑚𝑖𝑛 𝐽

log 𝑞𝜂(𝑧)

1.18

z ≔ 𝜆𝑚𝑎𝑥 𝐽 − 𝜆𝑚𝑖𝑛 𝐽 = 4𝛽 = 1.18
⇒ 𝛽 = 0.295



Glauber’s mixing time 𝑱 𝒉

𝑂(𝑛2) [Eldan-Koehler-Zertouni’21] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Jain-Koehler-Pham-V.’21a] 𝛽 < 1/4 All external fields

𝑂(𝑛 log 𝑛) [Anari-Koehler-V.’24] 𝛽 ≤ 0.295 All external fields

t𝑚𝑖𝑥,Glauber ≥ exp(Ω 𝑛 ) 
No polytime “stable” algorithm [AMS’22]

𝛽 > 1 0

Open Problem 1: 

0.295 < 𝛽<1?

SK model: 𝜇 𝐽,ℎ 𝑥 = exp(
1

2
𝑥, 𝐽𝑥 + ℎ, 𝑥 ), 𝐽𝑗𝑖 = 𝐽𝑖𝑗 ∼ 𝒩 0,

𝛽2

𝑛
 i.i.d.

Open Problem 2:
Stronger evidence for 

hardness when 𝛽 > 1
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