Fractionally Log-Concave & Sector-Stable Polynomials: Counting Planar Matchings and More

Yeganeh Alimohammadi Nima Anari Kirankumar Shiragur **Thuy-Duong "June" Vuong**

Stanford

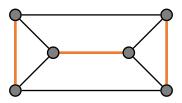
Northwestern Theory Seminar November 2, 2022

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong

ractionally Log-Concave & Sector Stable

1 / 51

Counting Matching

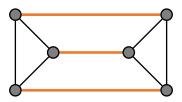


Orange edges form a matching

<回と < 目と < 目と

æ

Counting Matching



Orange edges form a matching Total # matchings: 2

回 とう モン・ モン

æ

Q: Efficient algorithm for counting fixed-size matching in graph? A:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ,

- $Q{:}\ Efficient algorithm for counting fixed-size matching in graph?$
- A: Intractable
- Q: Why do we care?
- A: Counting matching might shed light on P=NP question.

向下 イヨト イヨト

æ

Q: Efficient algorithm for approximate counting fixed-size matching in graph? A:

(日) (日) (日)

Q: Efficient algorithm for approximate counting fixed-size matching in graph? A: Open for decades

白 ト イヨト イヨト

Q: Efficient algorithm for approximate counting fixed-size matching in graph?

- A: Open for decades
- Q: Efficient algorithm for approximate counting fixed-size matching in planar graph?
- A: This work

• • = • • = •

Background Technique

Other Applications

Counting Problems Matchings

Overview

- 1 Background
 - Counting Problems
 - Matchings
- 2 Technique
 - Reduce Counting to Sampling
 - Sampling via Random Walks
 - Fast Mixing From Sector-Stability
- **3** Other Applications

イロン 不同 とくほど 不同 とう

Э

Counting Problems Matchings

Decision vs. Counting

Given description for $L \subseteq \{0, 1\}^n$

Decision

Counting

Approximate Counting

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

Decide if L is empty

 SAT: Decide if φ has a satisfying assignment

Counting Problems Matchings

Decision vs. Counting

Given description for $L \subseteq \{0,1\}^n$ e.g. *L* is set of *x* satisfying $(x_1 \lor x_2 \lor \bar{x_3}) \land (x_1 \lor x_4 \lor x_5).$

Decision

Decide if L is empty

 SAT: Decide if has a satisfying assignment

Counting

Compute |L|

 #SAT: Count # satisfying assignments

Approximate Counting

・ 回 ト ・ ヨ ト ・ ヨ ト

Counting Problems Matchings

Decision vs. Counting

Given description for $L \subseteq \{0,1\}^n$ e.g. *L* is set of *x* satisfying $(x_1 \lor x_2 \lor \bar{x_3}) \land (x_1 \lor x_4 \lor x_5).$

Decision

Decide if L is empty

 SAT: Decide if has a satisfying assignment

Counting

Compute |L|

 #SAT: Count # satisfying assignments

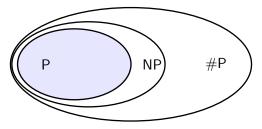
Approximate

Counting Compute \hat{Z} s.t. $0.9\hat{Z} \le |L| \le \hat{Z}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Counting Problems Matchings

Decision vs. Counting



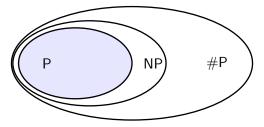
Counting is harder than Decision

イロン 不同 とくほど 不同 とう

Ð,

Counting Problems Matchings

Decision vs. Counting

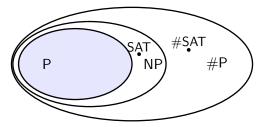


- Counting is harder than Decision
- #P-complete problems: at least as hard as all problems in #P.

・日・ ・ ヨ・ ・ ヨ・

Counting Problems Matchings

Decision vs. Counting

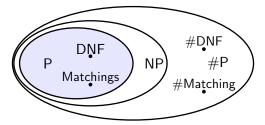


- Counting is harder than Decision
- #P-complete problems: at least as hard as all problems in #P. E.g.: #SAT

イロト イヨト イヨト イヨト

Counting Problems Matchings

Decision vs. Counting

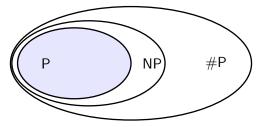


- Counting is harder than Decision
- #P-complete problems: at least as hard as all problems in #P.
- Easy to decide-hard to count: DNF formulas, matchings

・日・ ・ ヨ・ ・ ヨ・

Counting Problems Matchings

Decision vs. Counting



- Counting is harder than Decision
- #P-complete problems: at least as hard as all problems in #P.
- Easy to decide-hard to count: DNF formulas, matchings
- Easier to approximate count?

・ 回 ト ・ ヨ ト ・ ヨ ト …

Counting Problem Matchings

Concrete example: matchings in graph

イロン 不同 とうほう 不同 とう

Counting Problems Matchings

Complexity of Counting Matching

	General	Bipartite	Planar
Perfect matching			
k-matching			

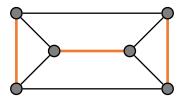
イロト イヨト イヨト イヨト

æ

Counting Problem Matchings

Perfect Matching

A set of n/2 edges that meets every vertex at most once.



Decision \equiv decide if G has a perfect matching (PM): efficient [Edmonds'65]

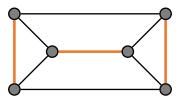
・ 回 ト ・ ヨ ト ・ ヨ ト …

크

Counting Problems Matchings

Perfect Matching

A set of n/2 edges that meets every vertex at most once.



Decision \equiv decide if G has a perfect matching (PM): efficient [Edmonds'65] Counting \equiv compute #PM: intractable (#P-complete [Valiant'87])

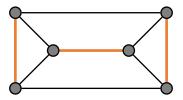
・ 回 ト ・ ヨ ト ・ ヨ ト

크

Counting Problems Matchings

Perfect Matching

A set of n/2 edges that meets every vertex at most once.



Decision \equiv decide if *G* has a perfect matching (PM): efficient [Edmonds'65] Counting \equiv compute #PM: intractable (#P-complete [Valiant'87]) Approximate counting \equiv output \hat{Z} s.t. $0.9\hat{Z} \leq \#$ PM $\leq \hat{Z}$: open

・ 同 ト ・ ヨ ト ・ ヨ ト …

	General	Bipartite	Planar
Perfect matching	$\stackrel{\scriptstyle{\scriptsize (2)}}{}$		
	[Val87]		
	?		
k-matching			

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Partial results for specific graph families. Next: bipartite and planar graphs

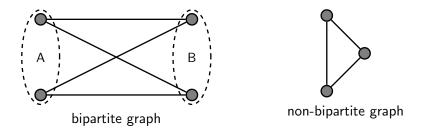
イロン 不同 とうほう 不同 とう

Э

Counting Problem Matchings

Bipartite Graphs

Bipartite graph $G = G(A \cup B, E)$: $A \cap B = \emptyset, E \subseteq A \times B$



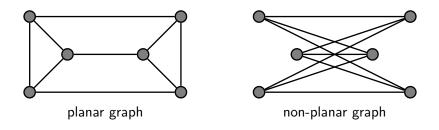
イロト イヨト イヨト イヨト

크

Counting Problem Matchings

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.

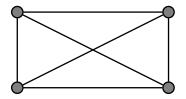


・ 回 ト ・ ヨ ト ・ ヨ ト …

Counting Problems Matchings

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.

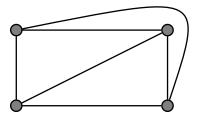


回 とくほとくほと

Counting Problems Matchings

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.



> < E > < E >

	General	Bipartite	Planar
Perfect matching	$\stackrel{\scriptstyle{\scriptsize (2)}}{}$		
	[Val87]		
	?		
k-matching			

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Counting Problems Matchings

Perfect Matching-Bipartite Graphs

• Counting: #P-complete [Valiant'87]

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 15/51

(4回) (4回) (日)

Counting Problems Matchings

Perfect Matching-Bipartite Graphs

• Counting: #P-complete [Valiant'87]

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 15/51

(4回) (4回) (日)

Counting Problems Matchings

Perfect Matching-Bipartite Graphs

- Counting: #P-complete [Valiant'87]
- Approximate counting: in P [Jerrum-Sinclair-Vigoda'04]

・ 回 ト ・ ヨ ト ・ ヨ ト

	General	Bipartite	Planar
Perfect matching	8	8	
	[Val87]	[Val87]	
	?	٢	
		[JSV04]	
k-matching			

: approximate, : exact : in P, : #P-complete, ?: Open

イロン 不同 とくほど 不同 とう

Counting Problems Matchings

Perfect Matching–Planar Graphs

 Counting perfect matching in planar graph is in P!! [Kasteleyn'67]

・ 回 ト ・ ヨ ト ・ ヨ ト

	General	Bipartite	Planar
Perfect matching	:	(;)	\odot
	[Val87]	[Val87]	[Kas67]
	?	<u></u>	
		[JSV04]	[Kas67]
k-matching			

: approximate, : exact : in P, : #P-complete, ?: Open

イロン 不同 とくほど 不同 とう

Counting Problem Matchings

What about non-perfect matching?

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 19/51

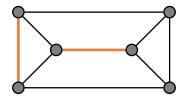
イロン 不同 とうほう 不同 とう

Ð,

Counting Problems Matchings

Non-Perfect Matchings: *k*-Matchings

A set of k/2 edges that meets every vertex at most once. Equivalently, a perfect matching on $S \subseteq V$ with |S| = k.



白 と く ヨ と く ヨ と …

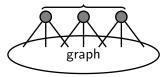
3

Counting Problems Matchings

k-Matchings vs. Perfect Matchings

■ Decision/Counting: ∃ reduction from k-matching in G to perfect matching in G'

$$n-2k$$
 dummy nodes



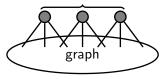
回 とうほう うほとう

Counting Problems Matchings

k-Matchings vs. Perfect Matchings

■ Decision/Counting: ∃ reduction from k-matching in G to perfect matching in G'

$$n-2k$$
 dummy nodes



• If G is bipartite, G' is bipartite

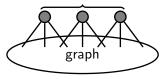
• • = • • = •

Counting Problems Matchings

k-Matchings vs. Perfect Matchings

■ Decision/Counting: ∃ reduction from k-matching in G to perfect matching in G'

$$n-2k$$
 dummy nodes

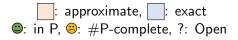


• If G is bipartite, G' is bipartite

• • = • • = •

Counting Problem Matchings

	General	Bipartite	Planar
Perfect matching	$\stackrel{\scriptstyle{\scriptsize (2)}}{}$	8	٢
	[Val87]	[Val87]	[Kas67]
	?	٢	٢
		[JSV04]	[Kas67]
k-matching	:	:	
	[Val87]	[Val87]	
	?	٢	
		[JSV04]	



イロン 不同 とうほう 不同 とう

군.

Counting Problem Matchings

k-Matchings vs. Perfect Matchings

But G' is not planar even if G is planar

・ 回 ト ・ ヨ ト ・ ヨ ト …

Counting Problem Matchings

k-Matchings vs. Perfect Matchings

- But G' is not planar even if G is planar
- Counting k-matching in planar graph is #P-complete [Jerrum'87]

・ 回 ト ・ ヨ ト ・ ヨ ト

Counting Problems Matchings

k-Matchings vs. Perfect Matchings

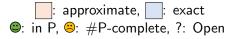
- But G' is not planar even if G is planar
- Counting k-matching in planar graph is #P-complete [Jerrum'87]
- Approximate counting k-matching in planar graph is in P [this work]

イロン イヨン イヨン ・

3

Counting Problem Matchings

	General	Bipartite	Planar
Perfect matching	:		٢
	[Val87]	[Val87]	[Kas67]
	?	٢	٢
		[JSV04]	[Kas67]
k-matching	:	:	æ
	[Val87]	[Val87]	[Jer87]
	?		٢
		[JSV04]	[this]



イロン 不同 とうほう 不同 とう

군.

Counting Problem Matchings

Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching (runtime $\approx poly(|V|, k, \log \frac{1}{\epsilon}))$

Planar graphs

イロン イヨン イヨン ・

3

Counting Problems Matchings

Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching (runtime $\approx poly(|V|, k, \log \frac{1}{\epsilon}))$

- Planar graphs 😄
- Any graph where counting #PM of subgraphs is easy

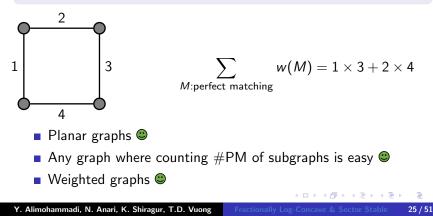
イロト イヨト イヨト イヨト 二日

Counting Problems Matchings

Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching (runtime $\approx poly(|V|, k, \log \frac{1}{\epsilon}))$



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

臣

Overview

- Background
 - Counting Problems
 - Matchings
- 2 Technique
 - Reduce Counting to Sampling
 - Sampling via Random Walks
 - Fast Mixing From Sector-Stability
- **3** Other Applications

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

(4月) トイヨト イヨト

Reduce Counting to Sampling

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

伺下 イヨト イヨト

Reduce Counting to Sampling

Approximate Counting \equiv Compute \hat{Z} s.t. $\frac{\hat{Z}}{\# k-\text{matchings}} \in [1 - \epsilon, 1]$ Approximate Sampling \equiv Output a *k*-matching according to a distribution that is ϵ -away from the uniform dist. over *k*-matchings

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ロン ・四 と ・ ヨ と ・ 日 と

3

Reduce Counting To Sampling

Counting \equiv Compute # k-matchings in graph Sampling \equiv Output a random k-matching

■ Approximate Counting ⇔ Approximate Sampling [Jerrum-Vazirani-Vazirani'86]

$$\#\mathsf{M} = \frac{\#\mathsf{M}}{\#\mathsf{M} \text{ contains } 1} \times \frac{\#\mathsf{M} \text{ contains } 1}{\#\mathsf{M} \text{ contains } 1, 2} \cdots$$

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduce Counting To Sampling

Counting \equiv Compute # k-matchings in graph Sampling \equiv Output a random k-matching

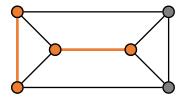
■ Approximate Counting ⇔ Approximate Sampling

$$\#\mathsf{M} = \frac{1}{\mathbb{P}[\mathsf{M} \text{ contains } 1]} \times \frac{1}{\mathbb{P}[\mathsf{M} \text{ contains } 2 \ | \text{ contain } 1]} \cdots$$

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Reduce Counting To Sampling

- Approximate Counting ⇔ Approximate Sampling
- Sample endpoints of k-matchings

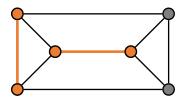


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

Reduce Counting To Sampling

- Approximate Counting ⇔ Approximate Sampling
- Sample endpoints of k-matchings
- Given endpoints set S(|S| = k), sample a matching on S

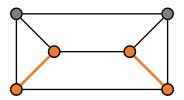


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

Reduce Counting To Sampling

- Approximate Counting ⇔ Approximate Sampling
- Sample endpoints of k-matchings
- Given endpoints set S(|S| = k), sample a matching on S

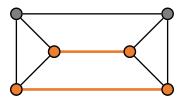


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

Reduce Counting To Sampling

- Approximate Counting ⇔ Approximate Sampling
- Sample endpoints of k-matchings
- Given endpoints set S(|S| = k), sample a matching on S

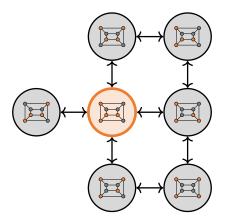


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

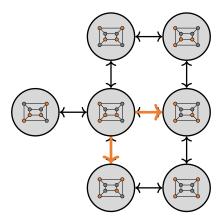
æ

Sample Endpoints Using Random Walk



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

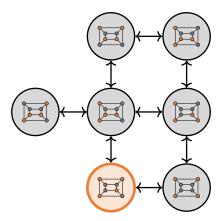


≣ 29 / 51

イロト イヨト イヨト イヨト

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk



≣ 29 / 51

イロト イヨト イヨト イヨト

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

A (1) × (2) × (3) ×

3

Sample Endpoints Using Random Walk

Start at distribution μ_0 , apply transition rule for T steps to reach desired distribution μ

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ 同 ト ・ ヨ ト ・ ヨ ト

3

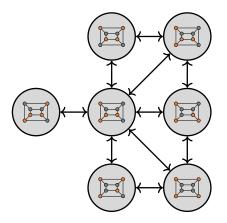
Sample Endpoints Using Random Walk

- Start at distribution μ_0 , apply transition rule for T steps to reach desired distribution μ
- Want: T is small (= poly(|V|, k)) i.e. fast mixing

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

Local Walk: Only allow local moves between S, T that are close i.e. $|S \setminus T| \le 1 \rightarrow$ easy to transition between $S, T \otimes$



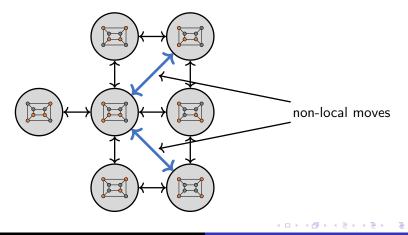
・ 同 ト ・ ヨ ト ・ ヨ ト

≣ 32 / 51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

Local Walk: Only allow local moves between S, T that are close i.e. $|S \setminus T| \le 1 \rightarrow$ easy to transition between $S, T \otimes$

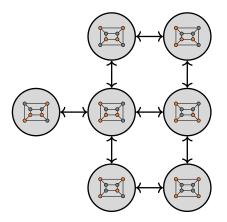


32 / 51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

Local Walk: Only allow local moves between S, T that are close i.e. $|S \setminus T| \le 1 \rightarrow$ easy to transition between $S, T \otimes$



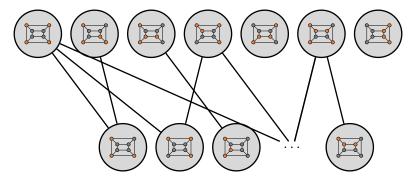
A (10) × (10) × (10) ×

≣ 32 / 51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

(日) (四) (三) (三) (三)

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



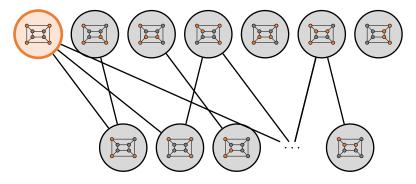
Sample from homogeneous distribution μ over $\binom{[n]}{k}$. **1** Drop an element uniformly at random.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

æ

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



Sample from homogeneous distribution μ over $\binom{[n]}{k}$.

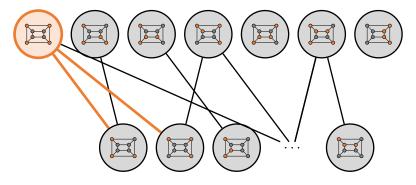
1 Drop an element uniformly at random.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

æ

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



Sample from homogeneous distribution μ over $\binom{[n]}{k}$.

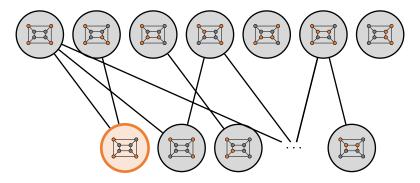
1 Drop an element uniformly at random.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

æ

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



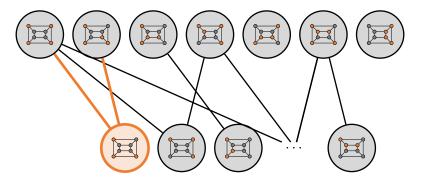
Sample from homogeneous distribution μ over $\binom{[n]}{k}$.

1 Drop an element uniformly at random.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ロト ・回ト ・ヨト ・ヨト … ヨ

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



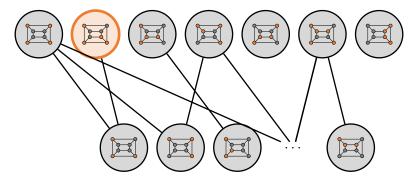
Sample from homogeneous distribution μ over $\binom{[n]}{k}$.

- **1** Drop an element uniformly at random.
- **2** Add an element with probability $\propto \mu$ (resulting set).

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ロト ・回ト ・ヨト ・ヨト … ヨ

Random Walk $k \leftrightarrow (k-1)$ (1-Step Down-Up Walk)



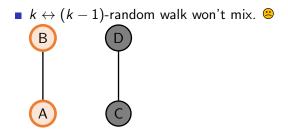
Sample from homogeneous distribution μ over $\binom{[n]}{k}$.

- **1** Drop an element uniformly at random.
- **2** Add an element with probability $\propto \mu$ (resulting set).

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン 不同 とうほう 不同 とう

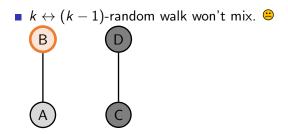
æ,



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン 不同 とうほう 不同 とう

æ,



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン 不同 とうほう 不同 とう

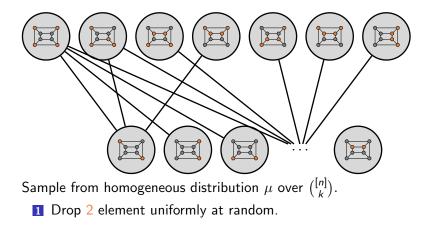
2

- $k \leftrightarrow (k-1)$ -random walk won't mix. 🙁
- $k \leftrightarrow (k-2)$ walk does!

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

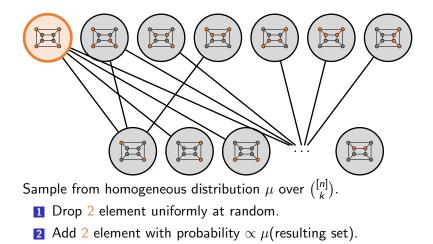
イロト イヨト イヨト イヨト

3



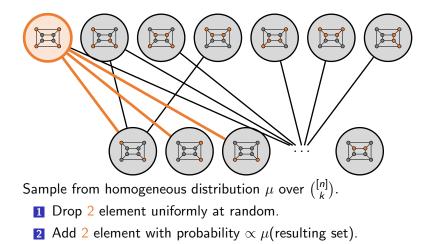
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト 二日



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

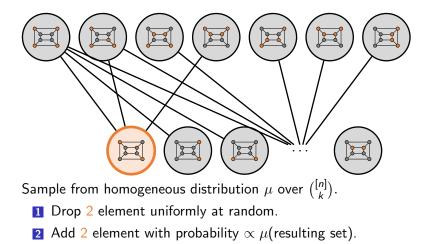
イロト イヨト イヨト イヨト 二日



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

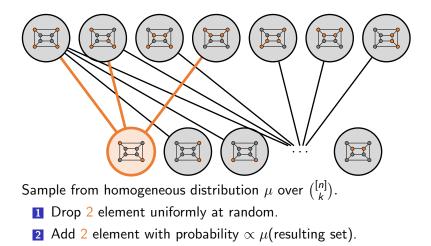
3



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン イヨン イヨン イヨン

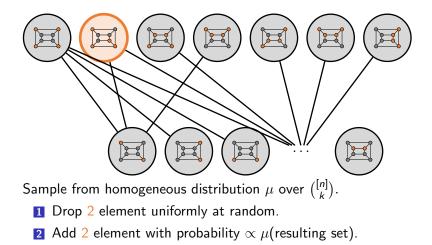
3



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン イヨン イヨン イヨン

2



We can bound mixing time of multi-step down-up walk by proving that the hypergraph associated with μ is a high-dimensional expander.

イロト イポト イヨト イヨト

3

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

High-dimensional expander

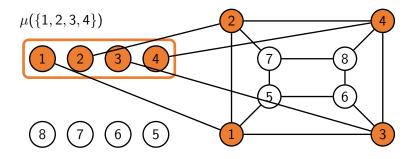
View distribution as weighted hypergraphs

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 37/51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander

View distribution $\mu : \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ as weighted *k*-uniform hypergraphs



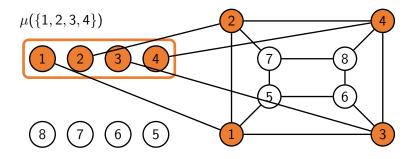
イロン 不同 とくほど 不同 とう

≣ 38 / 51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander

View distribution $\mu : \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ as weighted *k*-uniform hypergraphs



イロン 不同 とくほど 不同 とう

≣ 38 / 51

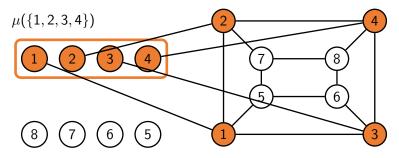
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander

View distribution $\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$ as weighted *k*-uniform

hypergraphs

 $\label{eq:High-dimensional} \mbox{High-dimensional expansion (HDX): measuring connected-ness of hypergraph$



≣ 38 / 51

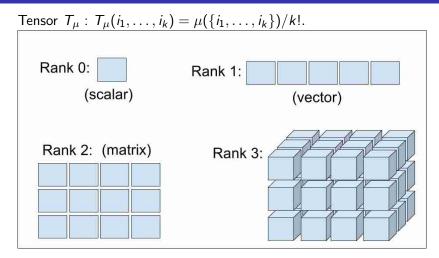
イロン 不同 とうほう 不同 とう

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン 不同 とうほう 不同 とう

크

High-dimensional expander (HDX): tensor view



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

伺 ト イヨト イヨト

High-dimensional expander (HDX): tensor view

Tensor
$$T_{\mu}$$
: $T_{\mu}(i_1, ..., i_k) = \mu(\{i_1, ..., i_k\})/k!$.

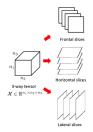
■ k = 2 : (graph) expansion ≡ spectral properties of the adjacency matrix

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor
$$T_\mu$$
: $T_\mu(i_1,\ldots,i_k)=\mu(\{i_1,\ldots,i_k\})/k!.$

- k = 2 : (graph) expansion ≡ spectral properties of the adjacency matrix
- k > 2 : HDX ≡ spectral properties of all dimension 2 slices & averages of slices of tensor.



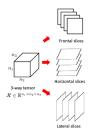
- 4 ⊒ ▶

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor T_{μ} : $T_{\mu}(i_1, ..., i_k) = \mu(\{i_1, ..., i_k\})/k!$.

- k = 2 : (graph) expansion ≡ spectral properties of the adjacency matrix
- k > 2: HDX \equiv spectral properties of all dimension 2 slices & averages of slices of tensor. slice (link): $\langle T_{\mu}, e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_{k-2}} \rangle$ average of slice (1-skeleton): $\langle T_{\mu}, (\mathbb{1}/n) \otimes (\mathbb{1}/n) \otimes \cdots \otimes (\mathbb{1}/n) \rangle$



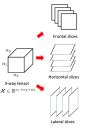
・ 同 ト ・ 三 ト ・ 三 ト -

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor T_{μ} : $T_{\mu}(i_1, ..., i_k) = \mu(\{i_1, ..., i_k\})/k!$.

- k = 2 : (graph) expansion ≡ spectral properties of the adjacency matrix
- k > 2 : HDX ≡ spectral properties of all dimension 2 slices & averages of slices of tensor.



Mixing time \equiv spectral properties of transition matrix Mthink M as

"unpacking" of T_{μ} .

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

臣

Proof of fast mixing: outline

HDX Spectral Independence

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 40/51

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

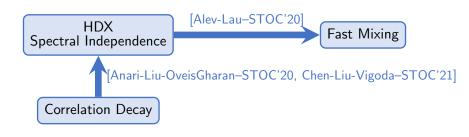
→

臣

Proof of fast mixing: outline

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 40/51

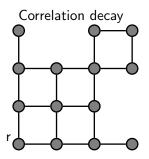
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

★ E ► ★ E ►

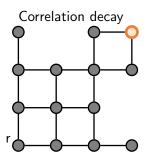
臣



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

★ E ► ★ E ►

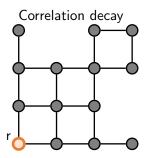
臣



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

★ E ► ★ E ►

臣

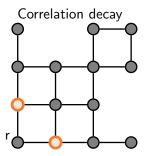


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

臣

通 ト イ ヨ ト イ ヨ ト

Proof of fast mixing: outline

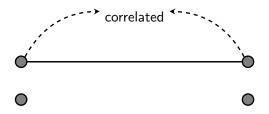


r is only highly correlated with a few "nearby" vertices

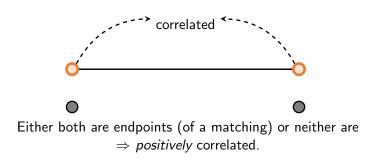
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

æ



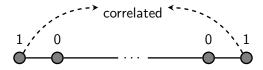
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

< ∃⇒

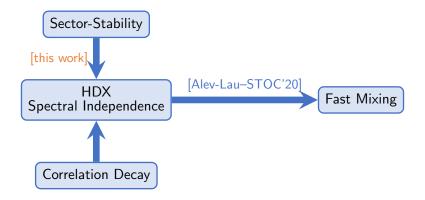
æ



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

< ∃⇒

臣



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

From root-free-ness to fast algorithm: intuition

•
$$\mu \sim {\binom{[n]}{k}} \stackrel{\text{encode}}{\longleftrightarrow} f_{\mu}(z_1, \dots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i$$

イロト イヨト イヨト イヨト

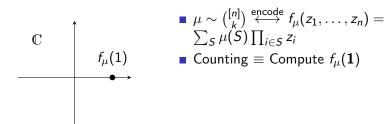
臣

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ 回 ト ・ ヨ ト ・ ヨ ト …

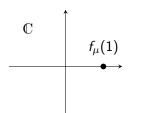
æ

From root-free-ness to fast algorithm: intuition



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

From root-free-ness to fast algorithm: intuition



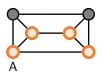
- $\mu \sim {[n] \choose k} \stackrel{\text{encode}}{\longleftrightarrow} f_{\mu}(z_1, \dots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i$
- Counting \equiv Compute $f_{\mu}(\mathbf{1})$
- $f_{\mu}(\mathbf{z}) = 0 \longleftrightarrow \log f_{\mu}(\mathbf{z})$ singular

・ 回 ト ・ ヨ ト ・ ヨ ト …

æ

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

From root-free-ness to fast algorithm: intuition



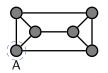
- $\mu \sim {\binom{[n]}{k}} \stackrel{\text{encode}}{\longleftrightarrow} f_{\mu}(z_1, \dots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i$
- Counting \equiv Compute $f_{\mu}(\mathbf{1})$
- $f_{\mu}(\mathbf{z}) = 0 \longleftrightarrow \log f_{\mu}(\mathbf{z})$ singular \Rightarrow abrupt change of derivatives of $\log f_{\mu}(\mathbf{z})$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

From root-free-ness to fast algorithm: intuition



- $\mu \sim {[n] \choose k} \stackrel{\text{encode}}{\longleftrightarrow} f_{\mu}(z_1, \dots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i$
- Counting \equiv Compute $f_{\mu}(\mathbf{1})$
- $f_{\mu}(\mathbf{z}) = 0 \longleftrightarrow \log f_{\mu}(\mathbf{z})$ singular \Rightarrow abrupt change of derivatives of $\log f_{\mu}(\mathbf{z})$

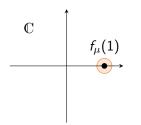
 $\partial_{z_1} f_{\mu}(\mathbf{z}) = \mathbb{P}[A \text{ is endpoint}]$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

From root-free-ness to fast algorithm: intuition



- $\mu \sim {[n] \choose k} \stackrel{\text{encode}}{\longleftrightarrow} f_{\mu}(z_1, \dots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i$
- Counting \equiv Compute $f_{\mu}(\mathbf{1})$
- $f_{\mu}(\mathbf{z}) = 0 \longleftrightarrow \log f_{\mu}(\mathbf{z})$ singular \Rightarrow abrupt change of derivatives of $\log f_{\mu}(\mathbf{z})$

・ 同 ト ・ ヨ ト ・ ヨ ト

• No roots "near" $1 \Rightarrow$ "easy" to approximate f_{μ}

 Background
 Reduce Counting to Sampling

 Technique
 Sampling via Random Walks

 Other Applications
 Fast Mixing From Sector-Stabilit

How to make it concrete?

イロン 不同 とくほど 不同 とう

Ð,

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Generating polynomial

For distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, let its generating polynomial be

$$f_{\mu}(z_1,\ldots,z_n) = \sum_{S} \mu(S) z^{S} = \sum_{S} \mu(S) \prod_{i \in S} z_i = \langle T_{\mu}, \mathbf{z}^{\otimes k} \rangle$$

where T_{μ} is the tensor defined by $T_{\mu}(i_1, \ldots, i_k) = \mu(\{i_1, \ldots, i_k\})/k!$.

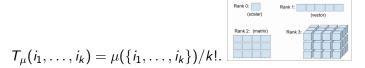
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Generating polynomial

For distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, let its generating polynomial be

$$f_{\mu}(z_1,\ldots,z_n) = \sum_{S} \mu(S) z^{S} = \sum_{S} \mu(S) \prod_{i \in S} z_i = \langle T_{\mu}, \mathbf{z}^{\otimes k} \rangle$$

where T_{μ} is the tensor defined by



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

<ロ> (四) (四) (三) (三) (三)

Generating polynomial

For distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, let its generating polynomial be

$$f_{\mu}(z_1,\ldots,z_n) = \sum_{S} \mu(S) z^{S} = \sum_{S} \mu(S) \prod_{i \in S} z_i = \langle T_{\mu}, \mathbf{z}^{\otimes k} \rangle$$

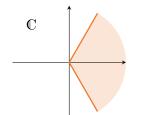
where T_{μ} is the tensor defined by $T_{\mu}(i_1, \ldots, i_k) = \mu(\{i_1, \ldots, i_k\})/k!$.

Question

 f_{μ} no roots near $\mathbb{R}^{n}_{+} \Rightarrow$ Efficient Sampling from μ ?

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Sector stable polynomial



Definition

f is
$$lpha$$
-sector-stable if $f(z)
eq 0$ for z in $S_lpha=\{z\in \mathbb{C}^* \mid |{
m arg}(z)|$

イロト イヨト イヨト イヨト

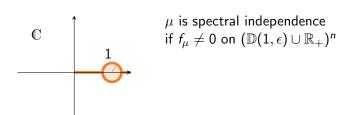
æ

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

<回と < 目と < 目と

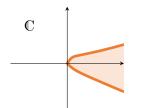
臣

Generalization



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Generalization



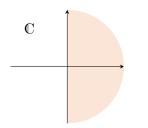
 μ is spectral independence [Chen-Liu-Vigoda–FOCS'21]: if $f_{\mu} \neq 0$ on infinite regions

臣

∢ ≣ ▶

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

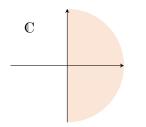
Example of α -Sector-Stable Distributions



 (Non-homogeneous) endpoint distribution is 1-sector-stable (Hurwitz stable) [Hellman-Lieb'72]

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Example of α -Sector-Stable Distributions

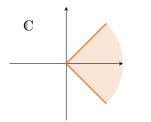


 (Non-homogeneous) endpoint distribution is 1-sector-stable (Hurwitz stable) [Hellman-Lieb'72]

 1-sector stable ≡ half-plane stable (circular region): has been studied by [Lee-Yang'52,Borcea-Branden'09]

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Example of α -Sector-Stable Distributions



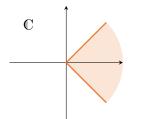
 (Non-homogeneous) endpoint distribution is 1-sector-stable (Hurwitz stable) [Hellman-Lieb'72]

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1-sector stable ≡ half-plane stable (circular region): has been studied by [Lee-Yang'52,Borcea-Branden'09]
- Homogenegous endpoint distribution is 1/2-sector-stable [this work]

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

Example of α -Sector-Stable Distributions



 (Non-homogeneous) endpoint distribution is 1-sector-stable (Hurwitz stable) [Hellman-Lieb'72]

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1-sector stable ≡ half-plane stable (circular region): has been studied by [Lee-Yang'52,Borcea-Branden'09]
- Homogenegous endpoint distribution is 1/2-sector-stable [this work]
- Many things to explore

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

臣

Sector stable \Rightarrow Spectral Independence

 Ψ^{cor} : correlation matrix

$$\Psi^{\mathsf{cor}}_{\mu}(i,j) = \mathbb{P}_{\mathcal{S} \sim \mu}[j \in \mathcal{S} \mid i \in \mathcal{S}]$$

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロン 不同 とうほう 不同 とう

3

Sector stable \Rightarrow Spectral Independence

 Ψ^{cor} : correlation matrix

$$\Psi^{\mathsf{cor}}_{\mu}(i,j) = \mathbb{P}_{\mathcal{S} \sim \mu}[j \in \mathcal{S} \mid i \in \mathcal{S}]$$

Theorem (Main technical)

If μ is α -sector stable, then $\forall \lambda \in \mathbb{R}^n_{>0}, \|\Psi^{cor}_{\mu}\|_1 \leq 2/\alpha$.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

<ロ> (四) (四) (三) (三) (三)

Sector stable \Rightarrow Spectral Independence

 Ψ^{cor} : correlation matrix

$$\Psi^{\mathsf{cor}}_{\mu}(i,j) = \mathbb{P}_{\mathcal{S} \sim \mu}[j \in \mathcal{S} \mid i \in \mathcal{S}]$$

Theorem (Main technical)

If μ is α -sector stable, then $\forall \lambda \in \mathbb{R}^{n}_{\geq 0}$, $\underbrace{\|\Psi^{cor}_{\lambda*\mu}\| \leq 2/\alpha}_{\frac{\alpha}{2} - FLC}$.

Spectral independence $\equiv \{ \| \Psi_{\mu(|S)}^{cor} \|_2 \le O(1) \forall S \}$ If μ is sector stable, then $\lambda * \mu$ (defined by $\lambda * \mu(S) \propto \mu(S) \prod_{i \in S} \lambda_i$) is sector stable Fractional log-concave (FLC) $\equiv \lambda * \mu$ spectrally independent for all external field $\lambda \in \mathbb{R}^n_{\ge 0}$.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

3

Sector stable \Rightarrow Spectral Independence

Ψ^{cor} : correlation matrix

$$\Psi^{\mathsf{cor}}_{\mu}(i,j) = \mathbb{P}_{\mathcal{S} \sim \mu}[j \in \mathcal{S} \mid i \in \mathcal{S}]$$

Theorem (Main technical)

If μ is α -sector stable, then $\forall \lambda \in \mathbb{R}^{n}_{\geq 0}$,

Spectral independence $\equiv \{ \| \Psi_{\mu(|S)}^{cor} \|_2 \le O(1) \forall S \}$ If μ is sector stable, then $\lambda * \mu$ (defined by $\lambda * \mu(S) \propto \mu(S) \prod_{i \in S} \lambda_i$) is sector stable Fractional log-concave (FLC) $\equiv \lambda * \mu$ spectrally independent for all external field $\lambda \in \mathbb{R}^n_{\ge 0}$.

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

A (10) × (10) × (10) ×

臣

Geometry of polynomial view of fractional log-concavity (FLC)

μ is $\alpha\text{-fractionally}\log$ concave \approx

$$f_{\mu}(z_1,\ldots,z_n)^{\frac{1}{k\alpha}} \leq \sum_{i=1}^n p_i z_i^{1/\alpha}$$

with $p_i = \frac{1}{k} \frac{\partial f}{\partial z_i}(\vec{1})$

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

(4月) トイヨト イヨト

臣

Geometry of polynomial view of fractional log-concavity (FLC)

 μ is $\alpha\text{-fractionally}\log$ concave \approx

$$\langle T_{\mu}, \mathbf{z}^{\otimes k} \rangle^{\frac{1}{k\alpha}} = f_{\mu}(z_1, \dots, z_n)^{\frac{1}{k\alpha}} \leq \sum_{i=1}^n p_i z_i^{1/\alpha} \approx \|z\|_{1/\alpha}^{1/\alpha}$$

with $p_i = \frac{1}{k} \frac{\partial f}{\partial z_i}(\vec{1})$

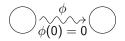
Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

イロト イヨト イヨト イヨト

臣

Proof of main technical theorem

Complex Analysis

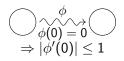


Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

臣

Proof of main technical theorem

Complex Analysis



Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Proof of main technical theorem

Complex Analysis

• Write $\|\Psi_{\mu}^{cor}(i,\cdot)\|_1 = \phi'(0)$ for ϕ' holomorphic

Reduce Counting to Sampling Sampling via Random Walks Fast Mixing From Sector-Stability

< 回 > < 三 > < 三 >

Proof of main technical theorem

- Complex Analysis
- Write $\|\Psi^{cor}_{\mu}(i,\cdot)\|_1 = \phi'(0)$ for ϕ' holomorphic
- Use Schwarz's lemma to bound $\phi'(0)$.

Overview

- 1 Background
 - Counting Problems
 - Matchings
- 2 Technique
 - Reduce Counting to Sampling
 - Sampling via Random Walks
 - Fast Mixing From Sector-Stability
- 3 Other Applications

イロト イヨト イヨト イヨト

 Local Markov chains to sample from determinantal point processes (DPP).

イロン 不同 とうほう 不同 とう

3

 Local Markov chains to sample from determinantal point processes (DPP).

 $\mu(S) = \det(L_{S,S}) \forall S \subseteq [n].$

★◎ ▶ ★ 注 ▶ ★ 注 ▶ … 注

Local Markov chains to sample from determinantal point processes (DPP).

Frequently Bought Together

Total price: \$83.09 Add both to Cart Add both to List

This item: Structure and Interpretation of Computer Programs - 2nd Edition (MIT Electrical Engineering and ... by Harold Abelson Papertasis \$50,50 The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt, Paperback \$32,59

Customers Who Bought This Item Also Bought

Edition

\$35.00 Prime

Instructor's Manual Va Structure and Interpretation of Computer Programs... Cented Jay Sussmen ******* Paperback \$28 70 APrime

The Pragmatic Programmer: From Journeyman to Master Andrew Hunt ****** \$7 328 Paperback \$32.59 Abrime

Introduction to Algorithms. 3rd Edition (MIT Press) > Thomas H. Cormen A1 Best Seller (in Computer

\$86.32 Prime

Purely Functional Data Structures Chris Okasak ***** \$40.74 -Prime

Code: The Hidden Language of Computer Hardware and Software > Charles Petzold ****** #1 Bost Seller (in Machine Theory Paperback

\$17.99 - Prime

<ロ> (四) (四) (三) (三) (三)

The Little Prover (MIT Daniel P. Friedman ***** \$31.78 -Prime

Page 1 of 13

>

Through Lambda. > Greg Michaelson ***** Paperback \$20.70 JPrim

• Local Markov chains to sample from nonsymmetric determinantal point processes (DPP) [Gartrell-Brunel'20] with kernel *L* when $L + L^T$ PSD.

回 と く ヨ と く ヨ と …

3

 Local Markov chains to sample from nonsymmetric determinantal point processes (DPP).

・ 回 ト ・ ヨ ト ・ ヨ ト …

 Local Markov chains to sample from nonsymmetric determinantal point processes (DPP).

・ 回 ト ・ ヨ ト ・ ヨ ト …

- Local Markov chains to sample from nonsymmetric determinantal point processes (DPP).
- Efficient algorithm for counting/sampling DPP intersects with partition constraints

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

- Local Markov chains to sample from nonsymmetric determinantal point processes (DPP).
- Efficient algorithm for counting/sampling DPP intersects with partition constraints

Generally: the intersection of Rayleigh matroid and partition matroid of constantly many partitions.

回 ト イヨ ト イヨ ト 三日

- Local Markov chains to sample from nonsymmetric determinantal point processes (DPP).
- Efficient algorithm for counting/sampling DPP intersects with partition constraints
- Fast mixing \Rightarrow MAP-inference via local search [Anari-V.'21]

* 圖 * * 注 * * 注 * … 注