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graph?
A:

Q: Efficient algorithm for counting fixed-size matching in
planar graph?
A: This work
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Q: Efficient algorithm for counting fixed-size matching in
graph?
A: Intractable
Q: Why do we care?
A: Counting matching might shed light on P=NP question.

Q: Efficient algorithm for counting fixed-size matching in
planar graph?
A: This work
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Overview
1 Background

Counting Problems
Matchings

2 Technique
Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

3 Other Applications
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Counting Problems
Matchings

Decision vs. Counting

Given description for L ⊆ {0, 1}n

e.g. L is set of x satisfying
(x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x4 ∨ x5).

Decision
Decide if L is empty

SAT: Decide if ϕ
has a satisfying
assignment

Counting

Compute |L|
#SAT: Count #
satisfying
assignments

Approximate
Counting

Compute Ẑ s.t.
0.9Ẑ ≤ |L| ≤ Ẑ
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Counting Problems
Matchings

Decision vs. Counting

P NP #P

SAT #SAT
DNF

Matchings

#DNF

#Matching

Counting is harder than Decision

#P-complete problems: at least as hard as all problems in #P.

Easy to decide–hard to count: DNF formulas, matchings

Easier to approximate count?
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Decision vs. Counting

P NP #P
SAT #SAT

DNF

Matchings

#DNF

#Matching

Counting is harder than Decision

#P-complete problems: at least as hard as all problems in
#P. E.g.: #SAT

Easy to decide–hard to count: DNF formulas, matchings

Easier to approximate count?
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Counting Problems
Matchings

Concrete example: matchings in graph
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Counting Problems
Matchings

Complexity of Counting Matching

General Bipartite Planar

Perfect matching

k-matching

: approximate, : exact
: in P, : #P-complete, ?: Open
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Counting Problems
Matchings

Perfect Matching

A set of n/2 edges that meets every vertex at most once.

Decision ≡ decide if G has a perfect matching (PM): efficient
[Edmonds’65]
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A set of n/2 edges that meets every vertex at most once.

Decision ≡ decide if G has a perfect matching (PM): efficient
[Edmonds’65]
Counting ≡ compute #PM: intractable (#P-complete [Valiant’87])
Approximate counting ≡ output Ẑ s.t. 0.9Ẑ ≤ #PM ≤ Ẑ : open
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General Bipartite Planar

Perfect matching
[Val87]

?

k-matching

: approximate, : exact
: in P, : #P-complete, ?: Open
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Counting Problems
Matchings

Partial results for specific graph families.
Next: bipartite and planar graphs
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Counting Problems
Matchings

Bipartite Graphs

Bipartite graph G = G (A ∪ B,E ): A ∩ B = ∅,E ⊆ A× B

A B

bipartite graph
non-bipartite graph
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Counting Problems
Matchings

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.

planar graph non-planar graph
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Counting Problems
Matchings

Perfect Matching–Bipartite Graphs

Counting: #P-complete [Valiant’87]

Approximate counting: in P [Jerrum-Sinclair-Vigoda’04]
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Counting Problems
Matchings

General Bipartite Planar

Perfect matching
[Val87] [Val87]

?
[JSV04]

k-matching

: approximate, : exact
: in P, : #P-complete, ?: Open
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Counting Problems
Matchings

Perfect Matching–Planar Graphs

Counting perfect matching in planar graph is in P!!
[Kasteleyn’67]
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Counting Problems
Matchings

General Bipartite Planar

Perfect matching
[Val87] [Val87] [Kas67]

?
[JSV04] [Kas67]

k-matching

: approximate, : exact
: in P, : #P-complete, ?: Open
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What about non-perfect matching?
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Counting Problems
Matchings

Non-Perfect Matchings: k-Matchings

A set of k/2 edges that meets every vertex at most once.
Equivalently, a perfect matching on S ⊆ V with |S | = k .
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Counting Problems
Matchings

k-Matchings vs. Perfect Matchings

Decision/Counting: ∃ reduction from k-matching in G to
perfect matching in G ′

graph

n − 2k dummy nodes

If G is bipartite, G ′ is bipartite
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Perfect matching
[Val87] [Val87] [Kas67]

?
[JSV04] [Kas67]

k-matching
[Val87] [Val87]

?
[JSV04]

: approximate, : exact
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Counting Problems
Matchings

k-Matchings vs. Perfect Matchings

But G ′ is not planar even if G is planar

Counting k-matching in planar graph is #P-complete
[Jerrum’87]

Approximate counting k-matching in planar graph is in P [this

work]
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General Bipartite Planar

Perfect matching
[Val87] [Val87] [Kas67]

?
[JSV04] [Kas67]

k-matching
[Val87] [Val87] [Jer87]

?
[JSV04] [this]

: approximate, : exact
: in P, : #P-complete, ?: Open
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Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching
(runtime ≈ poly(|V |, k , log 1

ϵ ))

Planar graphs

Any graph where counting #PM of subgraphs is easy

Weighted graphs
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Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching
(runtime ≈ poly(|V |, k , log 1

ϵ ))

1

2

3

4

∑

M:perfect matching

w(M) = 1× 3 + 2× 4

Planar graphs

Any graph where counting #PM of subgraphs is easy

Weighted graphs
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Overview
1 Background

Counting Problems
Matchings

2 Technique
Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

3 Other Applications
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Reduce Counting to Sampling
Sampling via Random Walks
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Reduce Counting to Sampling

Counting ≡ Compute # k-matchings in graph
Sampling ≡ Output a random k-matching
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting to Sampling

Approximate Counting ≡ Compute Ẑ s.t. Ẑ
# k-matchings ∈ [1− ϵ, 1]

Approximate Sampling ≡ Output a k-matching according to a
distribution that is ϵ-away from the uniform dist. over k-matchings
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Reduce Counting to Sampling
Sampling via Random Walks
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Reduce Counting To Sampling

Counting ≡ Compute # k-matchings in graph
Sampling ≡ Output a random k-matching

Approximate Counting ⇔ Approximate Sampling
[Jerrum-Vazirani-Vazirani’86]

#M =
#M

#M contains 1
× #M contains 1

#M contains 1,2
· · ·

Sample endpoints of k-matchings

Given endpoints set S (|S | = k), sample a matching on S
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

Start at distribution µ0, apply transition rule for T steps to
reach desired distribution µ

Want: T is small (= poly(|V |, k)) i.e. fast mixing
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

Local Walk: Only allow local moves between S ,T that are close
i.e. |S \ T | ≤ 1 → easy to transition between S ,T

non-local moves
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Random Walk k ↔ (k − 2) (Multi-Step Down-Up Walk)

. . .

Sample from homogeneous distribution µ over
([n]
k

)
.

1 Drop 2 element uniformly at random.

2 Add 2 element with probability ∝ µ(resulting set).
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We can bound mixing time of multi-step down-up walk by proving
that the hypergraph associated with µ is a high-dimensional
expander.
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High-dimensional expander

View distribution as weighted hypergraphs
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High-dimensional expander

View distribution µ :
([n]
k

)
→ R≥0 as weighted k-uniform

hypergraphs

High-dimensional expansion (HDX): measuring connected-ness of
hypergraph

1 2 3 4

5678

µ({1, 2, 3, 4})

1

2

3

4

5 6

7 8
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)
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hypergraphs
High-dimensional expansion (HDX): measuring connected-ness of
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High-dimensional expander (HDX): tensor view

Tensor Tµ : Tµ(i1, . . . , ik) = µ({i1, . . . , ik})/k!.

k = 2 : (graph) expansion ≡
spectral properties of the
adjacency matrix

k > 2 : HDX ≡ spectral
properties of all dimension 2
slices & averages of slices of
tensor.
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Tensor Tµ : Tµ(i1, . . . , ik) = µ({i1, . . . , ik})/k!.

k = 2 : (graph) expansion ≡
spectral properties of the
adjacency matrix

k > 2 : HDX ≡ spectral
properties of all dimension 2
slices & averages of slices of
tensor. slice (link):
⟨Tµ, ei1 ⊗ ei2 ⊗ · · · ⊗ eik−2

⟩
average of slice (1-skeleton):
⟨Tµ, (1/n)⊗ (1/n)⊗ · · · ⊗
(1/n)⟩
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Tensor Tµ : Tµ(i1, . . . , ik) = µ({i1, . . . , ik})/k!.

k = 2 : (graph) expansion ≡
spectral properties of the
adjacency matrix

k > 2 : HDX ≡ spectral
properties of all dimension 2
slices & averages of slices of
tensor.

Mixing time ≡
spectral properties
of transition matrix
M
think M as
”unpacking” of Tµ.
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Proof of fast mixing: outline

Sector-Stability

Correlation Decay

HDX
Spectral Independence

Fast Mixing

[this work]

[Alev-Lau–STOC’20]
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Sector-Stability

Correlation Decay

HDX
Spectral Independence Fast Mixing

[this work]

[Anari-Liu-OveisGharan–STOC’20, Chen-Liu-Vigoda–STOC’21]

[Alev-Lau–STOC’20]
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Proof of fast mixing: outline

Correlation decay

r

r is only highly correlated with a few ”nearby” vertices
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Proof of fast mixing: outline

correlated

Either both are endpoints (of a matching) or neither are
⇒ positively correlated.
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From root-free-ness to fast algorithm: intuition

µ ∼
([n]
k

) encode←→ fµ(z1, . . . , zn) =∑
S µ(S)

∏
i∈S zi

Counting ≡ Compute fµ(1)

fµ(z) = 0←→ log fµ(z) singular

No roots ”near” 1 ⇒ ”easy” to
approximate fµ
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S µ(S)

∏
i∈S zi

Counting ≡ Compute fµ(1)

fµ(z) = 0←→ log fµ(z) singular
⇒ abrupt change of derivatives of
log fµ(z)

∂z1fµ(z) = P[A is endpoint]

No roots ”near” 1 ⇒ ”easy” to
approximate fµ
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How to make it concrete?
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Generating polynomial

For distribution µ :
([n]
k

)
→ R≥0, let its generating polynomial be

fµ(z1, . . . , zn) =
∑

S

µ(S)zS =
∑

S

µ(S)
∏

i∈S
zi = ⟨Tµ, z

⊗k⟩

where Tµ is the tensor defined by
Tµ(i1, . . . , ik) = µ({i1, . . . , ik})/k!.
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→ R≥0, let its generating polynomial be

fµ(z1, . . . , zn) =
∑

S

µ(S)zS =
∑

S

µ(S)
∏

i∈S
zi = ⟨Tµ, z

⊗k⟩

where Tµ is the tensor defined by
Tµ(i1, . . . , ik) = µ({i1, . . . , ik})/k!.

Question

fµ no roots near Rn
+ ⇒ Efficient Sampling from µ?

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 43 / 51



Background
Technique

Other Applications

Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Sector stable polynomial

C Definition

f is α-sector-stable if f (z) ̸= 0 for z in

Sα = {z ∈ C∗ | |arg(z)| < απ/2}
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Generalization

1

C
µ is spectral independence
if fµ ̸= 0 on (D(1, ϵ) ∪ R+)

n
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Generalization

C
µ is spectral independence
[Chen-Liu-Vigoda–FOCS’21]: if fµ ̸= 0 on
infinite regions
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Example of α-Sector-Stable Distributions

C (Non-homogeneous) endpoint distribution
is 1-sector-stable (Hurwitz stable)
[Hellman-Lieb’72]

1-sector stable ≡ half-plane stable
(circular region): has been studied by
[Lee-Yang’52,Borcea-Branden’09]

Homogenegous endpoint distribution is 1/2-sector-stable [this
work]

Many things to explore
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[Lee-Yang’52,Borcea-Branden’09]

Homogenegous endpoint distribution is 1/2-sector-stable [this
work]

Many things to explore
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Sector stable ⇒ Spectral Independence

Ψcor : correlation matrix

Ψcor
µ (i , j) = PS∼µ[j ∈ S | i ∈ S ]

Theorem (Main technical)

If µ is α-sector stable, then ∀λ ∈ Rn
≥0,

Spectral independence ≡ {∥Ψcor
µ(|̇S)
∥2 ≤ O(1)∀S}

If µ is sector stable, then λ ∗ µ (defined by λ ∗ µ(S) ∝ µ(S)
∏

i∈S λi ) is
sector stable
Fractional log-concave (FLC) ≡ λ ∗ µ spectrally independent for all
external field λ ∈ Rn

≥0.
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Geometry of polynomial view of fractional log-concavity (FLC)

µ is α-fractionally log concave ≈

fµ(z1, . . . , zn)
1
kα ≤

n∑

i=1

piz
1/α
i

with pi =
1
k

∂f
∂zi

(⃗1)

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 48 / 51



Background
Technique

Other Applications

Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Geometry of polynomial view of fractional log-concavity (FLC)

µ is α-fractionally log concave ≈

⟨Tµ, z
⊗k⟩

1
kα = fµ(z1, . . . , zn)

1
kα ≤

n∑

i=1

piz
1/α
i ≈ ∥z∥1/α1/α

with pi =
1
k

∂f
∂zi

(⃗1)

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong Fractionally Log-Concave & Sector Stable 48 / 51



Background
Technique

Other Applications

Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Proof of main technical theorem

Complex Analysis

ϕ

ϕ(0) = 0

⇒ |ϕ′(0)| ≤ 1

Write ∥Ψcor
µ (i , ·)∥1 = ϕ′(0) for ϕ′ holomorphic

Use Schwarz’s lemma to bound ϕ′(0).
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Local Markov chains to sample from determinantal point
processes (DPP).

Efficient algorithm for counting/sampling DPP intersects with
partition constraints

Fast mixing ⇒ MAP-inference via local search [Anari-V.’21]
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processes (DPP).

µ(S) = det(LS ,S)∀S ⊆ [n].

8 8 1 6 1 0

3 8 5 7 2 4

4 8 9 5 3 3

4 8 9 2 2 3

3 7 9 5 3 3

4 8 6 1 3 0
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partition constraints
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Local Markov chains to sample from nonsymmetric
determinantal point processes (DPP) [Gartrell-Brunel’20] with
kernel L when L+ LT PSD.

Efficient algorithm for counting/sampling DPP intersects with
partition constraints

Fast mixing ⇒ MAP-inference via local search [Anari-V.’21]
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Other Applications

Local Markov chains to sample from nonsymmetric
determinantal point processes (DPP).

Efficient algorithm for counting/sampling DPP intersects with
partition constraints
Generally: the intersection of Rayleigh matroid and partition
matroid of constantly many partitions.

Fast mixing ⇒ MAP-inference via local search [Anari-V.’21]
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