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Counting Matching

Orange edges form a matching
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Counting Matching

Orange edges form a matching
Total # matchings: 2
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Q: Efficient algorithm for counting fixed-size matching in
graph?
A:
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Q: Efficient algorithm for counting fixed-size matching in
graph?

A: Intractable

Q: Why do we care?

A: Counting matching might shed light on P=NP question.
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Q: Efficient algorithm for counting fixed-size
matching in graph?
A:
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Q: Efficient algorithm for approximate counting fixed-size
matching in graph?
A: Open for decades
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Q: Efficient algorithm for approximate counting fixed-size
matching in graph?

A: Open for decades

Q: Efficient algorithm for approximate counting fixed-size
matching in graph?

A: This work
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Counting Problems
Matchings

Overview

Background
m Counting Problems
m Matchings
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Matchings

Decision vs. Counting

Given description for L C {0,1}"

Decision Counting Approximate
Decide if L is empty Counting
m SAT: Decide if ¢

has a satisfying
assignment
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Matchings

Decision vs. Counting

Given description for L C {0,1}" e.g. L is set of x satisfying
(Xl V xo V )?3) A (Xl V x4 V X5).

Decision Counting Approximate
Decide if L is empty Compute |L| Counting
m SAT: Decide if ¢ m #SAT: Count #
has a satisfying satisfying
assignment assignments
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Matchings

Decision vs. Counting

Given description for L C {0,1}" e.g. L is set of x satisfying
(Xl V xo V )?3) A (Xl V x4 V X5).

Decision Counting Approximate
Decide if L is empty Compute |L| Counting
m SAT: Decide if ¢ m #SAT: Count # Compute Z s.t.
has a satisfying satisfying 00 <|L|<Z
assignment assignments
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Matchings

Decision vs. Counting

m Counting is harder than Decision
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Matchings

Decision vs. Counting

m Counting is harder than Decision

m #P-complete problems: at least as hard as all problems in #P.
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Matchings

Decision vs. Counting

AT\ 79AT
NP #P

m Counting is harder than Decision

m #P-complete problems: at least as hard as all problems in
#P. E.g.. #SAT
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Matchings

Decision vs. Counting

#DNF
#P
#Matching

DNF

P

Matchings

m Counting is harder than Decision
m #P-complete problems: at least as hard as all problems in #P.

m Easy to decide—hard to count: DNF formulas, matchings
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Matchings

Decision vs. Counting

Counting is harder than Decision
#P-complete problems: at least as hard as all problems in #P.
Easy to decide—hard to count: DNF formulas, matchings

Easier to approximate count?
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Concrete example: matchings in graph
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Matchings

Complexity of Counting Matching

General | Bipartite | Planar

Perfect matching

k-matching

D: approximate, []: exact
©: in P, ®: #P-complete, 7: Open
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Counting Problems

Perfect Matching

A set of n/2 edges that meets every vertex at most once.

Decision = decide if G has a perfect matching (PM): efficient
[Edmonds’65]
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Counting Problems

Perfect Matching

A set of n/2 that meets every vertex at most once.

Decision = decide if G has a perfect matching (PM): efficient
[Edmonds’65]
Counting = compute #PM: intractable (#P-complete [Valiant'87])
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Counting Problems

Perfect Matching

A set of n/2 that meets every vertex at most once.

Decision = decide if G has a perfect matching (PM): efficient
[Edmonds’65]

Counting = compute #PM: intractable (#P-complete [Valiant'87])
Approximate counting = output Zst 097 < #PM < Z: open
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Counting Problems

General | Bipartite | Planar
Perfect matching ®
[Val87]
?
k-matching

D: approximate, []: exact
©: in P, ®: #P-complete, 7: Open
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Counting Problems

Partial results for specific graph families.
Next: and
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Counting Problems

Bipartite Graphs

Bipartite graph G = G(AUB,E): ANB=0,ECAxB

bipartite graph non-bipartite graph
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Counting Problems

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.

planar graph non-planar graph
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Counting Problems

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.
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Counting Problems

Planar Graphs

Planar graphs: can be drawn on plane without crossing edges.
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Counting Problems

General | Bipartite | Planar
Perfect matching ®
[Val87]
?
k-matching

D: approximate, []: exact
©: in P, ®: #P-complete, 7: Open
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Counting Problems

Perfect Matching—Bipartite Graphs

m Counting: #P-complete [Valiant'87]
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Counting Problems

Perfect Matching—Bipartite Graphs

m Counting: #P-complete [Valiant'87]
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Counting Problems

Perfect Matching—Bipartite Graphs

m Counting: #P-complete [Valiant'87]

m Approximate counting: in P [Jerrum-Sinclair-Vigoda'04]
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Counting Problems

General | Bipartite | Planar
Perfect matching ® ®
[Val87] | [Val87]
? ©
[JSV04]
k-matching

D: approximate, []: exact
©: in P, ®: #P-complete, 7: Open
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Counting Problems

Perfect Matching—Planar Graphs

m Counting perfect matching in planar graph is in P!!
[Kasteleyn'67]
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Counting Problems

General | Bipartite | Planar
Perfect matching ® ® e
[Valg87] | [Val87] | [Kasb67]
? ©) ©
[JSV04] | [Kas67]

k-matching

D: approximate, []: exact

©: in P, ®: #P-complete, 7: Open
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Counting Problems

What about non-perfect matching?
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Counting Problems

Non-Perfect Matchings: k-Matchings

A set of k/2 edges that meets every vertex at most once.
Equivalently, a perfect matching on S C V with |S| = k.
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Counting Problems

k-Matchings vs. Perfect Matchings

m Decision/Counting: 3 reduction from k-matching in G to
perfect matching in G’

n — 2k dummy nodes
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Counting Problems

k-Matchings vs. Perfect Matchings

m Decision/Counting: 3 reduction from k-matching in G to
perfect matching in G’

n — 2k dummy nodes

m If G is bipartite, G’ is bipartite
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Counting Problems

k-Matchings vs. Perfect Matchings

m Decision/Counting: 3 reduction from k-matching in G to
perfect matching in G’

n — 2k dummy nodes

m If G is bipartite, G’ is bipartite
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Counting Problems

General | Bipartite | Planar
Perfect matching ® ® e
[Valg87] | [Val87] | [Kasb67]
? ©) ©
[JSV04] | [Kas67]
k-matching &) &)
[Val87] | [Val87]
? ©
[JSV04]

D: approximate, E]: exact

©: in P, ®: #P-complete, ?: Open
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Counting Problems

k-Matchings vs. Perfect Matchings

m But G’ is not planar even if G is planar
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Counting Problems

k-Matchings vs. Perfect Matchings

m But G’ is not planar even if G is planar
m Counting k-matching in planar graph is #/P-complete
[Jerrum'87]
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Counting Problems

k-Matchings vs. Perfect Matchings

m But G’ is not planar even if G is planar

m Counting k-matching in planar graph is #/P-complete
[Jerrum'87]

m Approximate counting k-matching in planar graph is in P [this
work]
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Counting Problems

General | Bipartite | Planar
Perfect matching ® ® e
[Valg87] | [Val87] | [Kasb67]
? ©) ©
[JSV04] | [Kas67]
k-matching &) &) &)
[Val87] | [Val87] [Jer87]
? © ©
[JSV04] [this]

D: approximate, E]: exact

©: in P, ®: #P-complete, ?: Open
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Counting Problems

Main Result: Counting Matching

Efficient algorithm to approximately count k-matching
Y 1
(runtime ~ poly(|V|, k,log 2))

m Planar graphs ©
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Counting Problems

Main Result: Counting Matching

Efficient algorithm to approximately count k-matching
Y 1
(runtime ~ poly(|V|, k,log 2))

m Planar graphs ©
m Any graph where counting #PM of subgraphs is easy ©
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Counting Problems

Main Result: Counting Matching

Theorem

Efficient algorithm to approximately count k-matching
(runtime ~ poly(|V/|, k,log 1))

2

1 3 > w(M)=1x3+2x4
M:perfect matching
4
m Planar graphs ©
m Any graph where counting #PM of subgraphs is easy ©
m Weighted graphs ©
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Reduce Counting to Sampling
Sampling via Random Walks
Fast Mixing From Sector-Stability

Overview

Technique
m Reduce Counting to Sampling
m Sampling via Random Walks
m Fast Mixing From Sector-Stability
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting to Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting to Sampling

Approximate Counting = Compute Z s.t. m €l —¢1]
Approximate Sampling = Output a k-matching according to a
distribution that is e-away from the uniform dist. over k-matchings
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching

m Approximate Counting < Approximate Sampling
[Jerrum-Vazirani-Vazirani'86]

B #M " #M contains 1
~ #M contains 1~ #M contains 1,2

my

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching
m Approximate Counting < Approximate Sampling

1 1
~ P[M contains 1] % P[M contains 2 | contain 1]

#M
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching
m Approximate Counting < Approximate Sampling

m Sample endpoints of k-matchings
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching
m Approximate Counting < Approximate Sampling
m Sample endpoints of k-matchings

m Given endpoints set S (|S| = k), sample a matching on S
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
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m Sample endpoints of k-matchings

m Given endpoints set S (|S| = k), sample a matching on S
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Sampling via Random Walks
Fast Mixing From Sector-Stability

Reduce Counting To Sampling

Counting = Compute # k-matchings in graph
Sampling = Output a random k-matching
m Approximate Counting < Approximate Sampling
m Sample endpoints of k-matchings

m Given endpoints set S (|S| = k), sample a matching on S

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk
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Reduce Counting to Sampling
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

m Start at distribution ug, apply transition rule for T steps to
reach desired distribution g

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

m Start at distribution ug, apply transition rule for T steps to
reach desired distribution g

m Want: T is small (= poly(| V|, k)) i.e. fast mixing
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

: Only allow moves between S, T that are close
i.e. [S\ T| <1 — easy to transition between S, T ©
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

: Only allow moves between S, T that are close
i.e. [S\ T| <1 — easy to transition between S, T ©

non-local moves
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Sample Endpoints Using Random Walk

: Only allow moves between S, T that are close
i.e. [S\ T| <1 — easy to transition between S, T ©
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 1) (1-Step Down-Up Walk)

Sample from homogeneous distribution j over ([Z]).

Drop an element uniformly at random.
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 1) (1-Step Down-Up Walk)

Sample from homogeneous distribution j over ([Z]).

Drop an element uniformly at random.
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 1) (1-Step Down-Up Walk)

Ca (]
Sample from homogeneous distribution 1 over (1).
Drop an element uniformly at random.

B Add an element with probability o< p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 1) (1-Step Down-Up Walk)

Ca (]
Sample from homogeneous distribution 1 over (1).
Drop an element uniformly at random.

B Add an element with probability o< p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

endpoint

Apply To u,

m k <> (k — 1)-random walk won't mix. @
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

endpoint

Apply To u,

m k <> (k — 1)-random walk won't mix. @
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

endpoint

Apply To u,

m k <> (k — 1)-random walk won't mix. @
m k <> (k—2) walk does! ©
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

Sample from homogeneous distribution j over ([Z]).

Drop 2 element uniformly at random.
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

Sample from homogeneous distribution s over (I71).
Drop 2 element uniformly at random.

A Add 2 element with probability o p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

Sample from homogeneous dlstrlbutlon L over ([Z]).
Drop 2 element uniformly at random.

A Add 2 element with probability o p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

Sample from homogeneous distribution s over (I71).
Drop 2 element uniformly at random.

A Add 2 element with probability o p(resulting set).

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

AEAOOEE
A \
D@

Sample from homogeneous distribution y over ([Z]).

Drop 2 element uniformly at random.

A Add 2 element with probability o p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Random Walk k <> (k — 2) (Multi-Step Down-Up Walk)

Sample from homogeneous dlstrlbutlon L over ([Z]).
Drop 2 element uniformly at random.

A Add 2 element with probability o p(resulting set).
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

We can bound mixing time of multi-step down-up walk by proving
that the hypergraph associated with u is a high-dimensional
expander.
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander

View distribution as weighted hypergraphs
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander

View distribution p : ([Z]) — R>g as weighted k-uniform
hypergraphs

1({1,2,3,4})
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander

View distribution p : ([Z]) — R>g as weighted k-uniform
hypergraphs

1({1,2,3,4})

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander

View distribution p : ([Z]) — R>g as weighted k-uniform
hypergraphs

High-dimensional expansion (HDX): measuring connected-ness of
hypergraph

1({1,2,3,4})
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor T, : T,(i1,..., ix) = p({m, ..., i})/k!.
Ranic2:| Rank 1: [T |
(scalar) (vector)
Rank 2: (matrix) Rank 3: /7

] B
I 11

I mEAN




Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor Ty : Tu(in, ...y ik) = p({i, -, ik})/ kL.

m k =2 : (graph) expansion =
spectral properties of the
adjacency matrix
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor Ty : Tu(in, ...y ik) = p({i, -, ik})/ kL.
m k =2 : (graph) expansion = %

spectral properties of the & bona
adjacency matrix @- é/, Z
m k> 2: HDX = spectral gy
properties of all dimension 2 7% Aai
slices & averages of slices of oy
tensor. o
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor T, : T,(it, .. i) = p({i,- -, ik})/ kL.

m k =2 : (graph) expansion =
spectral properties of the

adjacency matrix %

m k> 2: HDX = spectral R
roperties of all dimension 2 Y
SIic:s & averages of slices of "@‘ / j/
tensor. slice (link): LSS
<TM7ei1 @ & ®”'®eik—2> ///ﬁ
average of slice (1-skeleton): ‘
(Tu, (/M@ (1/n)®--®
(1/n))
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

High-dimensional expander (HDX): tensor view

Tensor Ty : Tu(in, ...y ik) = p({i, -, ik})/ kL.

m k =2 : (graph) expansion = % Mixing time =
spectral properties of the & o spectral properties
adjacency matrix @- //77 of transition matrix

m k> 2: HDX = spectral ; ,,,,,,, / M
properties of all dimension 2 »*™%% - think M as
slices & averages of slices of //j "unpacking” of T.
tensor. o
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Proof of fast mixing: outline

HDX
Spectral Independence
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Proof of fast mixing: outline

[Alev-Lau-STOC'20

HDX —
[Spectral Independence
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Proof of fast mixing: outline
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Proof of fast mixing: outline

Correlation decay

C

r
o—0—0—-=0

r is only highly correlated with a few "nearby” vertices
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Reduce Counting to Sampling

Fast Mixing From Sector-Stability

Proof of fast mixing: outline

-> <--
e correlated BRI

Either both are endpoints (of a matching) or neither are
= positively correlated.
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Fast Mixing From Sector-Stability

Proof of fast mixing: outline

[Sector—Sta biIity]

[this work}l
[Alev-Lau-STOC'20

HDX —
[Spectral Independence

t

[Correlation Decay]
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Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

o~ ([Z]) epeode fu(z1,...,2n) =

225 1(S) lies zi

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

nl\ encode
(TR ([k]) — fu(z,...,2n) =
C > s #(S) [ies zi
fu(1) m Counting = Compute f,(1)

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

nl\ encode
(TR ([k]) — fu(z,...,2n) =
C > s #(S) [ies zi
fu(1) m Counting = Compute f,(1)

m f,(z) =0 <— logf,(z) singular

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

o~ ([Z]) epeode fulzi,...,zn) =
ZS 1(S) H,’es z;
m Counting = Compute f,(1)
A m f,(z) =0 ¢<— logf,(z) singular
= abrupt change of derivatives of
log fu(z)

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

o~ ([Z]) epeode fulzi,...,zn) =
225 #(S) [Tics 2
/ m Counting = Compute f,(1)
A m f,(z) =0 ¢<— logf,(z) singular
= abrupt change of derivatives of
log fu(z)

0z fu(z) = IP[A is endpoint]
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Reduce Counting to Sampling
Sampling via Random Walks

From root-free-ness to fast algorithm: intuition

o~ ([Z]) epeode fulzi,...,zn) =
ZS 1(S) H,’es z;

m Counting = Compute f,(1)

m f,(z) =0 ¢<— logf,(z) singular
= abrupt change of derivatives of
log fu(z)

m No roots "near” 1 = "easy” to
approximate f,
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Reduce Counting to Sampling
Sampling via Random Walks

How to make it concrete?
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Reduce Counting to Sampling
Sampling via Random Walks

Generating polynomial

For distribution p : (Z — R>o, let its generating polynomial be

[])
fu(zl,...,z,,):z ZM(S Hz,— 1, 29F)
S icS

where T, is the tensor defined by

(11,.. Ik) ({il,...,ik})/k!.
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Reduce Counting to Sampling
Sampling via Random Walks

Generating polynomial

For distribution s : ([Z]) — Ry, let its generating polynomial be

fu(z1,.. . 2n) = ZM(S)ZS = ZN(S) Hz,- = <TM=Z®k>
S

) ieS

where T, is the tensor defined by

(scalar) o (vector)
Rank 2: (matrix Rank 3: /7 4;/ il
(matrx) :_%_ﬁ%
Tu(i,-yik) = p({i, .. ik})/ k" Ty
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Reduce Counting to Sampling
Sampling via Random Walks

Generating polynomial

For distribution p : ( — R>o, let its generating polynomial be

[])
fu(zl,...,z,,):z ZM(S Hz,— 0 Z >
S i€S

where T, is the tensor defined by
Tulive i) = p({ins - i) /KL

Question

fu no roots near R’} = Efficient Sampling from 1?7

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

Sector stable polynomial

:

f is a-sector-stable if f(z) # 0 for z in

So ={z € C"||arg(z)| < ar/2}
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Reduce Counting to Sampling
Sampling via Random Walks

Generalization

1 is spectral independence
C if £, # 0 on (D(1,€) URL)"

o
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Reduce Counting to Sampling
Sampling via Random Walks

Generalization

1 is spectral independence
C [Chen-Liu-Vigoda—FOCS'21]: if £, # 0 on
infinite regions
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Reduce Counting to Sampling
Sampling via Random Walks

Example of a-Sector-Stable Distributions

C m (Non-homogeneous) endpoint distribution
is 1-sector-stable (Hurwitz stable)
[Hellman-Lieb'72]
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Reduce Counting to Sampling
Sampling via Random Walks

Example of a-Sector-Stable Distributions

C m (Non-homogeneous) endpoint distribution
is 1-sector-stable (Hurwitz stable)
[Hellman-Lieb'72]

m l-sector stable = half-plane stable
(circular region): has been studied by
[Lee-Yang'52,Borcea-Branden’'09]

m Homogenegous endpoint distribution is 1/2-sector-stable [this
work]

m Many things to explore

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



Reduce Counting to Sampling
Sampling via Random Walks

Sector stable = Spectral Independence
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Sector stable = Spectral Independence

Yeor - correlation matrix

V(i) =Psuli€ S|ieS]

Theorem (Main technical)

If 1 is a-sector stable, then VA € R, [[Wir ||y < 2/a.
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Reduce Counting to Sampling
Sampling via Random Walks

Sector stable = Spectral Independence
W : correlation matrix

Ve (i, j) = Ps.uli € S|i€ S

Theorem (Main technical)
If i is a-sector stable, then VA € RY,, [[WT, || < 2/a.
—_———

Spectral independence = {||W;‘E'|5)||2 < O(1)vS}

If 11 is sector stable, then A x y (defined by A * 1u(S) o< u(S) [];cs Ai) is
sector stable

Fractional log-concave (FLC) = X\ * p spectrally independent for all
external field A € R%,.
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Reduce Counting to Sampling
Sampling via Random Walks

Sector stable = Spectral Independence

Yeor - correlation matrix

V(i) =Psuli€ SlieS]

Theorem (Main technical)

If p is a-sector stable, then VA € R,

Spectral independence = {||\U;"(rls)||2 < O(1)vS}

If 11 is sector stable, then X p (defined by A * 1u(S) o< p(S) [[;cs Ai) is
sector stable

Fractional log-concave (FLC) = A * p spectrally independent for all
external field A € R%,.
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Reduce Counting to Sampling
Sampling via Random Walks

Geometry of polynomial view of fractional log-concavity (FLC)

1 is a-fractionally log concave ~

n
1 1
fu(z1, ..., zp)ke < E p,-zl-/a
i=1
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Reduce Counting to Sampling
Sampling via Random Walks

Geometry of polynomial view of fractional log-concavity (FLC)

1 is a-fractionally log concave ~

n
1 1 1
(Tu,z®k>ka fu(z1,...,zp)ke < Zp,-zi/a ~ Hz||1?3
i=1
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Sampling via Random Walks

Proof of main technical theorem

m Complex Analysis

)
OO
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Proof of main technical theorem

m Complex Analysis

)
OO

= [¢'(0)] <1
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Sampling via Random Walks

Proof of main technical theorem

m Complex Analysis
m Write [|[WE'(i,-)|[1 = ¢(0) for ¢’ holomorphic
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Reduce Counting to Sampling
Sampling via Random Walks

Proof of main technical theorem

m Complex Analysis
m Write [|[WE'(i,-)|[1 = ¢(0) for ¢’ holomorphic

m Use Schwarz's lemma to bound ¢'(0).

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong
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Other Applications
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m Local Markov chains to sample from determinantal point
processes (DPP).

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong



m Local Markov chains to sample from determinantal point
processes (DPP).

1(S) = det(Ls s)vS C [n].

W~
[0
Nej
ot
w
[=INJURN UG N )
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m Local Markov chains to sample from determinantal point

processes (DPP).
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m Local Markov chains to sample from
determinantal point processes (DPP) [Gartrell-Brunel'20]
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m Local Markov chains to sample from
determinantal point processes (DPP).

m Efficient algorithm for counting/sampling DPP intersects with
partition constraints
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m Local Markov chains to sample from
determinantal point processes (DPP).

m Efficient algorithm for counting/sampling DPP intersects with
partition constraints
Generally: the intersection of Rayleigh matroid and partition
matroid of constantly many partitions.
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m Local Markov chains to sample from
determinantal point processes (DPP).

m Efficient algorithm for counting/sampling DPP intersects with
partition constraints

m Fast mixing = MAP-inference via local search [Anari-V.'21]

Y. Alimohammadi, N. Anari, K. Shiragur, T.D. Vuong
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