On the Complexity of Sampling Redistricting Plans

Thuy-Duong "June" Vuong

Stanford University

Based on joint work with Moses Charikar, Paul Liu and Tianyu Liu

Outline

- 1. Redistricting problem
- 2. Sampling redistricting plans using Markov chains
 - \circ Spanning tree distribution
 - \circ Recombination (ReCom) chain
- 3. Slow mixing of ReCom on natural subgraph of the grid
- 4. Fixing ReCom
 - \odot Fast mixing of relaxed ReCom
 - \odot Enforcing balanced constraint

Redistricting

Partitioning map into districts = partitioning vertices of dual graph

Property of graph: planar, low degree (think: grid/subgraph of grid)

Redistricting

Partitioning map into districts = partitioning vertices of dual graph

Desirable properties for partitioning $P_1, \dots, P_k \subseteq V$

- Balanced: equal population $|P_i| \approx |V|/k$
- Contiguous: $G[P_i]$ is connected
- Compact: few edges between different parts (small cut)

Gerrymandering

Figure 4: Examples of scapegoating: North Carolina's 12th district and Maryland's 3rd, circa 2013.

Detecting gerrymandering

Is a given redistricting plan $P = (P_1, ..., P_k)$ an instance of gerrymandering?

Detecting gerrymandering

Is a given redistricting plan $P = (P_1, ..., P_k)$ an instance of gerrymandering?

Solution: sample many redistricting plans from some bipartisan agreed-upon distribution, then show that P is "similar" to these plans

Outline

- 1. Redistricting problem
- 2. Sampling redistricting plans using Markov chains
 - \circ Spanning tree distribution
 - \circ Recombination (ReCom) chain
- 3. Slow mixing of ReCom on natural subgraph of the grid
- 4. Fixing ReCom
 - \odot Fast mixing of relaxed ReCom
 - \odot Enforcing balanced constraint

Goal: distribution that favor balanced, contiguous, compact partitioning

Goal: distribution that favor balanced, contiguous, compact partitioning

Idea 1: partition with few cut edges: $\mu(P) \propto \lambda^{\#cut-edges(P)}$

Goal: distribution that favor balanced, contiguous, compact partitioning

Idea 1: partition with few cut edges: $\mu(P) \propto \lambda^{\#cut - edges(P)}$

But sampling from this is NP-hard 🟵

Goal: distribution that favor balanced, contiguous, compact partitioning

Idea 1: partition with few cut edges: $\mu(P) \propto \lambda^{\#cut-edges(P)}$

But sampling from this is NP-hard $\ensuremath{\mathfrak{S}}$

Idea 2: few cut edges = many spanning tree in each part [Procaccia—Tucker-Foltz—SODA'21]

Spanning tree distribution

Let $T(P_i) = \# \{ \text{spanning trees in } G[P_i] \}$. Distribution μ over k-partition of graph G s.t. $\mu(P_1, \dots, P_k) \propto \prod T(P_i)$ $\mu^{balanced}: \mu$ restricted to balanced partititoning

ReCom chain [Deford-Duchin-Solomon'19]

Current partition $(P_1, ..., P_k)$

- Merge step: merge two parts P_i , P_j
- Split step: split the union to P'_i, P'_j

Can choose the probability of merge and split so that the Markov chain converges to $\pi \equiv \mu^{balanced}$

Figure 11: The basic recombination step: two districts are merged, a spanning tree is chosen, a balance edge is selected and cut, leaving two new districts.

Outline

- 1. Redistricting problem
- 2. Sampling redistricting plans using Markov chains
 - \circ Spanning tree distribution
 - \circ Recombination (ReCom) chain
- 3. Slow mixing of ReCom on natural subgraph of the grid
- 4. Fixing ReCom
 - \circ Fast mixing of relaxed ReCom
 - \circ c-weighted spanning tree distribution
 - \odot Proportion of balanced partitionings

Slow mixing of ReCom

ReCom is not connected on the single cycle

ReCom is connected on the double cycle, but takes $\exp(\Omega(n))$ to mix ReCom is connected on grid-with-a-hole, but takes $\exp(\Omega(n))$ to mix

4. 4.

Natural example of grid-with-a-hole: map around a lake

Double cycle: proof intuition

Show existence of small cutset:

A set C of states (partitionings) whose removal disconnect two states A and B s.t.

$$\frac{\pi(A)}{\pi(C)} \approx \frac{\pi(B)}{\pi(c)} = \exp(\Omega(n))$$

Double cycle: proof intuition

Show existence of small cutset:

A set C of states (partitionings) whose removal disconnect two states A and B s.t.

$$\frac{\pi(A)}{\pi(C)} \approx \frac{\pi(B)}{\pi(c)} = \exp(\Omega(n))$$

Implies conductance $< \exp(-\Omega(n))$ thus slow mixing

Outline

- 1. Redistricting problem
- 2. Sampling redistricting plans using Markov chains
 - \circ Spanning tree distribution
 - \circ Recombination (ReCom) chain
- 3. Slow mixing of ReCom on natural subgraph of the grid
- 4. Fixing ReCom
 - \odot Fast mixing of relaxed ReCom
 - \odot Enforcing balanced constraint

"Relaxed"-ReCom on forests

Current state $(F_1, ..., F_k)$ where F_i is a tree in $G[P_i], P_i = V(F_i)$

- Merge step: merge two trees F_i , F_j by adding an edge
- Split step: split into two new trees F'_i , F'_j by removing an edge

This is precisely "Up-down walk on forest" [Anari-Liu-OveisGharan-Vinzant-Vuong--STOC'21] and runs in $O(|E|\log|E|)$ time

"Relaxed"-ReCom on forests

Enforcing balanced constraint

Q: How to enforce balanced constraint?

Enforcing balanced constraint

Q: How to enforce balanced constraint?

A: Rejection sampling: sample from μ and accept only balanced partitionings

Enforcing balanced constraint

Q: How to enforce balanced constraint?

A: Rejection sampling: sample from μ and accept only balanced partitionings

On mxn grid-graph, experimental evidence that for k = O(1) $\Pr[balanced] = 1/poly(m, n)$

Proof for the case m = O(1), for double cycle/grid-with-a-hole.

Soft balanced constraint

C-weighted spanning tree distribution: μ^c over k-partition of graph G s.t.

$$\mu^{c}(P_{1}, \dots, P_{k}) \propto \prod T(P_{i}) |P_{i}|^{c}$$
$$\mu^{c} = \mu \text{ if } c = 0 \quad \mu^{c} = \mu \text{ if } c = 0$$

$$\mu^{c} = \mu^{balanced}$$
 if $c = \infty$

Soft balanced constraint

Similar up-down walk can sample from μ^c in time $\tilde{O}(|V|^{O(c)}|E|)$ (Analysis using comparison with μ^0)

Proportion of balanced constraint

10x10 grid graph, k=2, histogram for size of minimum connected component

Proportion of balanced constraint

C = 20

30x30 grid graph, k=10, example of sampled partitionings for different values of C