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Quantum crash course
  

• Pure quantum states are sometimes represented by vectors 𝜓 ∈ ℂ2𝑛

       density matrix 𝜓 ⟨𝜓| ∈ ℂ2𝑛×2𝑛

• General quantum states are statistical mixture of pure state
𝜎 = ∑𝑝𝑖 𝜓𝑖 ⟨𝜓𝑖|

• Quantum operator on n qubits  𝑓 ∈ ℂ2𝑛×2𝑛

• Quantum state on n qubits  Hermitian 𝜎 ∈ ℂ2𝑛×2𝑛
, 𝑡𝑟 𝜎 = 1

• Hamiltonian 𝐻 ∈ ℂ2𝑛×2𝑛
, 𝐻 Hermitian

• Quantum Gibbs state of 𝐻 at inverse temperature 𝛽:
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Example: classical distribution 𝜇: 0,1 𝑛 → ℝ≥0     quantum state
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Quantum crash course
  

Example: classical distribution 𝜇: 0,1 𝑛 → ℝ≥0     quantum state

• Quantum operator on n qubits  𝑓 ∈ ℂ2𝑛×2𝑛

• Quantum state on n qubits  Hermitian 𝜎 ∈ ℂ2𝑛×2𝑛
, 𝑡𝑟 𝜎 = 1

• Hamiltonian 𝐻 ∈ ℂ2𝑛×2𝑛
, 𝐻 Hermitian

• Quantum Gibbs state of 𝐻 at inverse temperature 𝛽:

←

𝜎 = ∑𝑝𝑖 𝜓𝑖 ⟨𝜓𝑖|𝜇 𝑖 = 𝑝𝑖



Quantum Markov processes (Davies generator)

  

Understand & predict how open quantum systems behave:

• Physics: models thermalization

• Quantum computing: prepare quantum Gibbs state → optimization, 
quantum ML, candidate quantum to classical speedup

   

ℒ(𝑓)  = 𝑖 𝐻, 𝑓 + ∑

:



Davies generator
  

• Linbladian dynamics 𝜎𝑡 = 𝑒𝑡ℒ+
𝜎0

• Hamiltonian 𝐻: describes the internal quantum system

• Jump operators 𝒮 = 𝑆

• Transition rate 𝐺: 𝐵𝐻 → ℝ≥0

ℒ(𝑓)  = 𝑖 𝐻, 𝑓 + ∑

:

model interactions with the environment

Bohr frequency: 
𝐵𝐻 = {𝜆1 − 𝜆2: 𝜆1, 𝜆2 ∈ 𝑆𝑝𝑒𝑐 𝐻 }

coherent dissipative



Davies generator
  

• Linbladian dynamics 𝜎𝑡 = 𝑒𝑡ℒ+
𝜎0

• Hamiltonian 𝐻: describes the internal quantum system

• Jump operators 𝒮 = 𝑆  s.t. 

• Transition rate 𝐺 s.t.

• (KMS) reversible: 

ℒ(𝑓)  = 𝑖 𝐻, 𝑓 + ∑

:

⇒reversible
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Central question: Rate of convergence

Rate of convergence is controlled by the generator’s spectral gap

  𝜆 ℒ = 𝜆1 − 𝜆2 = |𝜆2|

Eigenvalues of generator ℒ: 0 = 𝜆1 ≥ 𝜆2 ≥ ⋯

ℒ 𝑖𝑑 = 0



Quantum vs classical walks 

ℒ
Quantum 

state ℒ
Embedded 

classical distribution

• ℒ : quantum random walk/linear operator on space of quantum states

• 𝑉0: subspace of operators that commute with 𝐻. ℒ(𝑉0) ⊆ 𝑉0

• ℒ |𝑉0
: isomorphic to classical random walk

Any Hamiltonian: Our work

Hamiltonians with simple spectrum: Temme’13



Classical walks 

ℒ |𝑉0
: isomorphic to classical random walk

For of 𝐻 𝜌 =

• Stationary distribution:

• Transition matrix:



Classical walks 

ℒ |𝑉0
: isomorphic to classical random walk

For of 𝐻 𝜌 =

• Stationary distribution:

• Transition matrix:

Claim: 𝑓 = ∑𝑓𝑖|𝑢𝑖⟩⟨𝑢𝑖|.           Let c

c



Classical walks 

ℒ |𝑉0
: isomorphic to classical random walk

For of 𝐻 𝜌 =

• Stationary distribution:

• Transition matrix:

Prop: There exists

s.t. 𝜆 ℒ |𝑉0
= spectral gap of classical Markov generator wrt 𝑈∗



Q: quantum spectral gap comparable to 
classical spectral gap?

• Physicists’ belief: yes

• Mathematicians’ findings: no, for 
some(contrived) Hamiltonian [Tem’13]
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)
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• Physicists’ belief: yes

• Mathematicians’ findings: no, for 
some(contrived) Hamiltonian [Tem’13]

ℒ
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ℒ
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distribution

𝜆 ℒ = 2−𝑛𝜆(ℒ |𝑉0
)

∃𝐻, ℒ:

𝑛: #qubits

Eigenvalues of 𝐻 are 1,2, … , 2𝑛
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)



• Physicists’ belief: yes

• Mathematicians’ findings: no, for 
some(contrived) Hamiltonian [Tem’13]

• Our work: yes, for generic 
Hamiltonians, e.g. those obtained by 
perturbing a fixed Hamiltonian by a 
random external field.

ℒ
Quantum

state 

ℒ

Embedded 
classical 

distribution

Thm: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , ∃𝒰 ⊆ ℝ𝑛of Lebesgue 
measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, Linbladian ℒ wrt 𝐻𝒉

𝜆 ℒ = Θ 1  𝜆(ℒ |𝑉0
) = Θ 1 𝜆𝑐𝑙

  

Q: quantum spectral gap comparable to 
classical spectral gap? 𝜆 ℒ  vs. 𝜆(ℒ |𝑉0

)



• Physicists’ belief: yes

• Mathematicians’ findings: no, for some 
Hamiltonian [Tem’13]

• Our work: yes, for generic 
Hamiltonians, e.g. those obtained by 
perturbing a fixed Hamiltonian by a 
random external field.

• Implication:
• Open the way to use classical techniques 

to analyze quantum walk

• Match physicists’ prediction

ℒ
Quantum

state 

ℒ

Embedded 
classical 

distribution

Q: quantum spectral gap comparable to 
classical spectral gap? 𝜆 ℒ  vs. 𝜆(ℒ |𝑉0

)



Proof

  



Thm 1: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , ∃𝒰 ⊆ ℝ𝑛of Lebesgue measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, Linbladian 
ℒ wrt 𝐻𝒉

𝜆 ℒ = Θ 1  𝜆(ℒ |𝑉0
)

Lem 1: If 𝐻 doesn’t contain a proper arithmetic progression of length > 𝐷

𝜆(ℒ |𝑉0
) ≥ 𝜆 ℒ ≥

1

2𝐷
 𝜆(ℒ |𝑉0

)

Lem 2: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , ∃𝒰 ⊆ ℝ𝑛of Lebesgue measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, 𝐻𝒉 doesn’t 
contain a proper arithmetic progression with length > 2 or repeated eigenvalues.



Lem 2: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , ∃𝒰 ⊆ ℝ𝑛of Lebesgue measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, 
𝐻𝒉 doesn’t contain a proper arithmetic progression (AP) with length > 2 
or repeated eigenvalues.

Proof (insipired by [Huang-Harrow’23]): 
Create polynomial 𝐹, 𝐺 s.t 𝐻𝒉 doesn’t have 3-APs ⇔ 𝐹 𝒉 ≠ 0

𝐻𝒉 doesn’t have repeated eigenvalues ⇔ 𝐺 𝒉 ≠ 0

𝒉 = 𝑅 ෩𝒉, R → +∞, 𝐻𝒉 → R∑ ෩ℎ𝑖𝑍𝑖  
Reducing to prove that ∑ℎ𝑖𝑍𝑖 doesn’t have 3-AP or repeated 
eigenvalues for generic (e.g. linearly independent) ℎ1, ⋯ , ℎ𝑛
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)

𝑉0
𝑐 =∪𝜔≠0 V𝜔 𝑉𝜔: image of map 𝑓 → 𝑓 𝜔 . Invariant under ℒ
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𝜆(ℒ |𝑉0
) ≥ 𝜆 ℒ ≥

1

2𝐷
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)

𝑉0
𝑐 =∪𝜔≠0 V𝜔 𝑉𝜔: image of map 𝑓 → 𝑓 𝜔 . Invariant under ℒ

Lem 1’: If 𝐻 doesn’t contain a proper arithmetic progression of length > 𝐷

𝜆(ℒ |𝑉 𝜔
) ≥

1

2𝐷
 𝜆(ℒ |𝑉0

)

𝜆 ℒ = min
𝜔

𝜆(ℒ|𝑉𝜔
)



Lem 1’: If 𝐻 doesn’t contain a proper arithmetic progression of length > 𝐷

𝜆(ℒ |𝑉 𝜔
) ≥

1

2𝐷
 𝜆(ℒ |𝑉0

)

∈ 𝑉0

𝜆 ℒ |𝑉 𝜔
= min

𝑓∈𝑉𝜔

𝑎𝑎𝑎𝑎







𝑇 ෥𝜔 ≥ 0
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