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Quantum crash course

* Quantum operator on n qubits & f € c2"x2"

» Quantum state on n qubits « Hermitian ¢ € C2 *2" tr(¢) = 1

e Hamiltonian H € C2"*2" H Hermitian
exp(—BH)

* Quantum Gibbs state of H at inverse temperature f: pg = tr(exp(—BH))

» Pure quantum states are sometimes represented by vectors |{) € C2"

& density matrix [P} (| € €2 *2"
* General quantum states are statistical mixture of pure state

o = Yl ;]
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Quantum crash course

* Quantum operator on n qubits & f € c2"x2"
» Quantum state on n qubits < Hermitian ¢ € C2" *2", tr(g) = 1

e Hamiltonian H € C2"*2" H Hermitian
exp(—BH)

* Quantum Gibbs state of H at inverse temperature f: pg = tr(exp(—BH))

Example: classical distribution u: {0,1}" —» R.,< quantum state

u(i) = p; o = Yl ;]



Quantum Markov processes (Davies generator)

L) = ([Hf1+3 G)(S(@) fS(w) - 5 {5()Sw), /)

S(w) := Z [Ty, ST,
A1,A2:A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

Understand & predict how open quantum systems behave:
* Physics: models thermalization

* Quantum computing: prepare quantum Gibbs state — optimization,
quantum ML, candidate quantum to classical speedup



Davies generator |
L) = HH f1+% Gw)(S(w) fS(w) = S{S(w)'S(w), f})

Y s _
coherent dissipative [A,B] = AB — BA
S(w) — E H/\:LSHAQ
{A, B} — AB + BA
A1, A2: A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

v = . . +
e Linbladian dynamics g, = et*" g,

* Hamiltonian H: describes the internal quantum system

* Jump operators S = {S}
* Transition rate G: QIL_) R>o)

Bohr frequency:
By = {A1 — A3: 44,4, € Spec(H)}

-—Mmodel interactions with the environment




Davies generator |
L) =i[H f1+X G)(S(wW)fS(w) = {S(w)'S(w), f})

S(w) := Z [Ty, ST,
A1,A2:A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

» Linbladian dynamics g, = et£" g,

* Hamiltonian H: describes the internal quantum system
* Jump operators § = {S} s.t. ST={ST:S¢ S}= S |
Glw) = G(—w)e—Pe —=reversible

 Transition rate G s.t.

* (KMS) reversible: (L(f), 900 = ([, £(9))p -
(A, B), := tr(p*/2 Ap'/2 BT)



Davies generator
LA = i TH, 1+ 3 Gw)(S)! fS(w) — 5 {S()Sw), /)

S(w) := Z [Ty, ST,
A1, A2: A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

t > +oo
o xp(—BH
* Linbladian dynamics g; = e“:+00 P =P3 = t:?efp(}(fm} )

e Hamiltonian H

* (KMS) reversible: (L(f),9)p = (f: £(9))p
* Ergodic: ker L = {id}



Davies generator
L) =i [Hf1+ 3 G@)(5)' fS(w) — 3 {5()'Sw). f})

. .
dissipative
S(w) := E [Ty, ST,
A1, A2: A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

t > +oo
o xp(—BH
* Linbladian dynamics g; = e“:+00 P =P3 = t:?efp(}(fm} )

e Hamiltonian H

* (KMS) reversible: (L(f),9)p = (f: £(9))p
* Ergodic: ker L = {id}



Davies generator
L(f) =HHA+ 3 C(@)(5)' S(w) — 3 {5()'Sw). f})

. .
dissipative
S(w) := E [Ty, ST,
A1, A2: A1 —A2=w

[1, :projector to the eigenspace of H of eigenvalue A

t > +oo
o xp(—BH
* Linbladian dynamics g; = e“:+00 P =P3 = t:?efp(}(fm} )

e Hamiltonian H

* (KMS) reversible: (L(f),9)p = (f: £(9))p
* Ergodic: ker L = {id}



Central question: Rate of convergence

Rate of convergence is controlled by the generator’s spectral gap
AL) =4 — A, = |4,

Eigenvalues of generator L: 0 = 4y =2 4, = -

L(id) =0



Quantum vs classical walks

L

Quantum
state

L

Embedded
classical distribution

* L :quantum random walk/linear operator on space of quantum states

* V,subspace of operators that commute with H. L(V,;) €

* Ly, isomorphic to classical random walk

Hamiltonians with simple spectrum: Temme’13

Any Hamiltonian: Our work




Classical walks

L |y, isomorphic to classical random walk

For eigenbasis U = {m}f‘;l of H P =Pp = tr?{}%{}ig(_—ﬁffg))

e Stationary distribution: 7:U — R>o  m(us) := (uilplui)

e Transition matrix: P E,U[ui — uﬂ — <£(|“;f ) <“j|):.~ ;) (u;])



Classical walks
L |y, isomorphic to classical random walk

For eigenbasis U = {?LL fil of H P =P = tr?{}%{}ig(_—ﬁfﬁ;))

e Stationary distribution: 7:U — R>o  m(us) := (uilplui)
 Transition matrix: P E,U[ui — uﬂ — (£(|uj> <?Lj|):.~ |ui> <‘Uﬂa|>
Claim: f = Y f;|u; Y{u;]. Let FF: U - R where F(u;) = f;

Ec(f) == —(L(f), f)p = EcvalF)
Var(f) := (f, f), — tr(pf) tr(pf7) = Var.(F)



Classical walks

L |y, isomorphic to classical random walk

For eigenbasis U = {m}il of H P =Pp = tr?;{:ig(_—ﬁffg))

e Stationary distribution: 7:U — R>o  m(us) := (uilplui)

* Transition matrix: Prului = uj] = (L(|us) (uil), Jwi) (wil)
Prop: There exists eigenbasis U* of H

s.t. )L(ZZ |Vo) = spectral gap of classical Markov generator wrt U~
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]



L

Quantum

state

L

Embedded
classical
distribution

DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]

3H, L:
AL) =27"A(L |V0)

n: #qubits
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]

3H, L:
AL) =27"A(L |V0)

n: #qubits

Eigenvalues of H are 1,2, ..., 2"
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]

* Our work: yes, for generic
Hamiltonians, e.g. those obtained by
perturbing a fixed Hamiltonian by a
random external field.

Thm: H, = Hy + Yh;Z;, 3U < R"of Lebesgue
measure 1 s.t. V(h;);€ U, Linbladian £ wrt Hy,
ML) = 0(1) A(L ) = O(DAg
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for some
Hamiltonian [Tem’13]

* Our work: yes, for generic
Hamiltonians, e.g. those obtained by
perturbing a fixed Hamiltonian by a
random external field.

* Implication:
* Open the way to use classical techniques
to analyze quantum walk

* Match physicists’ prediction



Proof



Thm 1: H, = Hy + Yh;Z;, AU < R"of Lebesgue measure 1 s.t. V(h;);€ U, Linbladian
L wrt Hh
A(L) = 0(1) AL y,)

Lem 1: If H doesn’t contain a proper arithmetic progression of length > D

1
AL vy) 2 AL) 2 55 AL )

Lem 2: Hy, = Hy + Yh;Z;, 3U < R™of Lebesgue measure 1 s.t. V(h;);€ U, H,, doesn’t
contain a proper arithmetic progression with length > 2 or repeated eigenvalues.



Lem 2: H, = Hy + Yh;Z;, 3U < R"™of Lebesgue measure 1 s.t. V(h;); € U,
H;, doesn’t contain a proper arithmetic progression (AP) with length > 2
or repeated eigenvalues.

Proof (insipired by [Huang-Harrow’23]):
Create polynomial F, G s.t Hy doesn’t have 3-APs & F(h) # 0
H,; doesn’t have repeated eigenvalues © G(h) + 0

F = H (Ai + A5 —2Ak) G(hi,...,hy,) = H (Ai — Aj)
1,7,k distinct RS
h=RhR- +oo,H, » RYh;Z;
Reducing to prove that ) h;Z; doesn’t have 3-AP or repeated
eigenvalues for generic (e.g. linearly independent) h4, -, A,



Lem 1: If H doesn’t contain a proper arithmetic progression of length > D

1
AL 1yy) 2 ML) = o= AL w,)

Vo =Uu=o Vo V,,: image of map f — f(w). Invariant under L

ML) = m(jn ALy,) [ flw):= Z LIy, f11x,

A1,A2: A1 —A2=w



Lem 1: If H doesn’t contain a proper arithmetic progression of length > D

1
AL 1yy) 2 ML) = o= AL w,)

Vo =Uu=o Vo V,,: image of map f — f(w). Invariant under L

ML) = m(jn ALy,) [ flw):= Z LIy, f11x,

A1,A2: A1 —A2=w

Lem 1’: If H doesn’t contain a proper arithmetic progression of length > D

1
ML ) = 55 AL y,)



Lem 1’: If H doesn’t contain a proper arithmetic progression of length > D
1
/1(1: Vo ) = on A(L |V0) gﬁ(]c)
Ec(f) = —(L(f) ) AL y,) = min

T€% Var(f)
Var(f) == (f, f), — tr(pf) tr(pfT)

3_ —
-

(ffH)H2 260(f) = €(g) + Ec(h)

— VO

/
\ fo)l/Q V&I‘( ) + Vﬂl‘(h)

1
5 va ar(f)



1S (w), f]”f; where é(w) — G(w)@%ﬂ

Bw

Gw) = Gw)ez = G(— )L

IA]l, = (A, A), = ||p*/*Ap**||}



=5 Y GWIISW). I} where G(w) = Gw)eF

G(w) = Gw)ez = G(—w).
1A, := (A, A), = ||p"*Ap*"*(}
26:(f) — (Ec(g) + Ec(h) =) G@)T(@) >0

'

w

T(®) = [|[S(@). fIII; + 1T (=), £l — 1(II[S(L'IJ), allly + ST (@), gl + IS(@), Al + [ST (=), R]II;)

= tr(S(w)§S (@) ') + tr(S(@)hS (@) h) — tr(S(w) FS(w)! 1) — tr(S(w) 1S ()t )

f=p" oM g = p hgpt k= p Mt g = (FF)YE h=(fTf)V3






Var(g) + Var(h) > — L Var(f)

= % DA Ii;z> (uil, f = > Ailug) (vi], and h = e 2_ i |vi) {wil

Orthonormal eigenbasis {u;};, {vi},- of H H(v;) = H(u;) —w

Var(g) > (1 — Z p(u;)) Var(f), Var(h) > Z p(v;)) Var(f

Take maximal sequence u;,, ..., u;, where H(u, i H(u,]) w‘v’]
H(v;, ) = H(u;, ) — w is also in spec(H) -

but v; not in spectral decompositi(in of ¢ 1—5 p(u;) >1/D

WLOG assume Bw > 0p(0;,) = + U;. —
P (i) k ;p( ) Var(g) > %Var(f)

H(u;),---,H(u;),H(v;,) : (k+1)-AP k+1<D _
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