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Quantum Markov processes

Hamiltonian H € C2"*2" H Hermitian
exp(—BH)

Quantum Gibbs state of H at inverse temperature 5: 05 = {1 (—3H))

Understand & predict how open quantum systems behave:

* Physics: simulates system coupled to a heat-bath

* Quantum computing: prepare quantum Gibbs state — optimization,
quantum ML, candidate quantum to classical speedup



Davies generator
L) =1 [Hf]+3 G)(S@) fS(w) — 3 {5)S(w). 1))

Y L] L] L] —

coherent dissipative [A,B] = AB — BA

S(w) := E [Ty, STI,, BB
A1, A2: A1 —A2=w ’ B

[1, :projector to the eigenspace of H of eigenvalue A

t > +oo

¥ = . . J— p— X _ﬁH
* Linbladian dynamics g; = e“:+00 P =P3 = tr{(%efp()(—_ﬁfg )

* Hamiltonian H: describes the internal quantum system

* Jump operators S = {S}
* Transition rate G: QIL_) R>o)

Bohr frequency:
By = {A1 — A3: 44,4, € Spec(H)}

-—Mmodel interactions with the environment
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Central question: Rate of convergence

Rate of convergence is controlled by the generator’s spectral gap
AL) = E; — E; = |E;|

Eigenvalues of generator L: 0 = E; = E;, = -

L(id) =0



Quantum vs classical walks

L

Quantum
state

L

Embedded
classical distribution

* L :quantum random walk/linear operator on space of quantum states

* V,subspace of operators that commute with H. L(V,;) €

* Ly, isomorphic to classical random walk

Hamiltonians with simple spectrum: Temme’13

Any Hamiltonian: Our work




Classical walks

L |y, isomorphic to classical random walk

For eigenbasis U = {m}il of H P =Pp = tr?;{:ig(_—ﬁffg))

e Stationary distribution: 7:U — R>o  m(us) := (uilplui)

* Transition matrix: Prului = uj] = (L(|us) (uil), Jwi) (wil)
Prop: There exists eigenbasis U* of H

s.t. )L(ZZ |Vo) = spectral gap of classical Markov generator wrt U~



L

Quantum

state

L

Embedded
classical
distribution

—_

DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for
some(contrived) Hamiltonian [Tem’13]

3H, L:
AL) =27"A(L |V0)

n: #qubits

Eigenvalues of H are 1,2, ..., 2"
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DECOHERENCE

Q: quantum spectral gap comparable to
classical spectral gap? A(L) vs. A(L y,)

* Physicists’ belief: yes

* Mathematicians’ findings: no, for some
Hamiltonian [Tem’13]

* Our work: yes, for Hamiltonians H
where Spec(H) doesn’t contain a
proper arithmetic progression.
Example: random perturbation of
arbitrary Hamiltonian

* Implication:
* Open the way to use classical techniques
to analyze quantum walk

* Match physicists’ prediction



Proof



Def: Proper Arithmetic Progression of length D:
{a,a+d,a+2d,---,a+d (D —1)} S Spec(H) whered # 0

Thm 1: If Spec(H) doesn’t contain a PAP of length > D
1
AL ) = AL) = 5D AL y,)

Lem 1: Hy, = Hy + Yh;Z;, 3U < R"™of Lebesgue measure 1 s.t. V(h;);€ U,
Spec(Hy) doesn’t contain a PAP with length > 2 or repeated eigenvalues.

Cor 1: Hy, = Hy + Yh;Z;, Hy arbitrary, 3U < R"of Lebesgue measure 1 s.t. V(h;);€ U,

Linbladian £ wrt Hy,
A(L) = 0(1) AL y,)

Proof of Lem 2: [inspired by Huang-Harrow’23]



Thm 1: If H doesn’t contain a proper arithmetic progression of length > D

1
AL 1yy) 2 ML) = o= AL w,)

Vo =Uu=o Vo V,,: image of map f — f(w). Invariant under L

ML) = m(jn ALy,) [ flw):= Z LIy, f11x,

A1,A2: A1 —A2=w
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Lem 1’: If H doesn’t contain a proper arithmetic progression of length > D
1
/1(1: Vo ) = on A(L |V0) gﬁ(]c)
Ec(f) = —(L(f) ) AL y,) = min

T€% Var(f)
Var(f) == (f, f), — tr(pf) tr(pfT)

3_ —
-

(ffH)H2 260(f) = €(g) + Ec(h)

— VO

/
\ fo)l/Q V&I‘( ) + Vﬂl‘(h)

1
5 va ar(f)



Lem 1’: If H doesn’t contain a proper arithmetic progression of length > D

1
/1(1: |Vw) = E A(L |V0) gﬁ(]c)

£c(f) = —(L(). D), Wowa) = pin 5,
Var(f) := (f, ), — tr(pf) tr(pfT)

260 (f) = Ec(g) +Ec(h)

1
D

V / — VO

fevy,
\h P — @—%’ (fo)lﬂ B V&I“(g) + Var(h) >

Var(f)

260(f) > Ec(9) +Ec(h) = A(Lyy,) (Var(g) + Var(h)) = %Var(f)
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A~

260(f) — (Eclg) + Ec(h) = Y G@)T(@) > 0

—

w

T(@)= tr(S(w)§S(@)'g) + tr(S(w)hS(w)th) — tr(S(w) FS(w) ) — tr(S(w) fTS(w)t f)= 0
Spectral decomposition then rewritten as Sum-of-Square
k

k k
§=), VAuul, = )y VAuiol, h=Y /Ao
=1 i=1

=1

T((I)) — Z(MM)UZMTS(W)H; — N?S(w)ﬁ”z > 0
1,]



Lem 1’: If H doesn’t contain a proper arithmetic progression of length > D
1
/1(1: Vo ) = on A(L |V0) gﬁ(f)
Ec(f) = —(L(f) ) AL y,) = min

F<% Var(f)
Var(f) := (f, ), — tr(pf) tr(pfT)

3_ —
-

(ffH)H2 260(f) = €(g) + Ec(h)

— VO

/
\ fff)l/z Var( ) + V%I'(h)

Var(f)

1
D




Var(g) + Var(h) > % Var(f)

g, H] = 0 = Spectral decomposition where {u;}; and {v;}; are
orthonormal eigenbasis of H

— % > A |1;£> (uil, f = > Ailug) (v;], and h = e~ % > A [vi) (v

AM-GM inequality: p(u;), p(v;) are eigenvalues of p corresponding to u;, v;

Var(g) > (1 —Zp u;)) Var(f), Var(h) > ( l—Zp )) Var(f)

If fw = 0: show 1—-> p(u;) >1/D = Var(g) > 1 = Var(f)

1
If fw < 0: show Var(h) = EVar(f)



Var(g) + Var(h) > % Var(f)

{u;}; and {v;}; are orthonormal eigenbasis of H, eigenvalue H(u;), H(v;)

Bw o Buw
g = ez Y Nu)(ui|l, f = O Ni|u)(v;], and h = e~ Y A;|v;) (v;]

Assume fw = 0: show |1 —> p(u;) >1/D| = Var(g) > % Var(f)

fev, >HWw;)) =Hu;) —w

Take maximal sequence u;,, ..., u;, where H (u,-].H) = u,-].) — wV]j

H(v; ) = H(u;,) — w is also in spec(H)
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fev, >Hw;)) =H(u;) —w

Take|maximal|sequence u;,, ..., u;, where H (u,-].H) = u,-].) — wV]j

H(v; ) = H(u;,) — w is also in spec(H)

but v; not in spectral decomposition of g
H(u;,),--- ,H(u;),H(v;,): (k+1)-AP = k+1<D




Var(g) + Var(h) > % Var(f)

{u;}; and {v;}; are orthonormal eigenbasis of H, eigenvalue H(u;), H(v;)

— T > oA |?‘;£> (wil, f = > Ailwg) (vi|, and h = e~ > Ai |vi) (vi
Assume Bw > 0:show [1 - p(u;) > 1/D| = Var(g) > 5 Var(f)

Take maximal sequence u;,, ..., u;, where H(u;,,) = H (ui].) — wV]
H(v; ) = H(u;,) — w is also in spec(H) butv; & SVD(g)

H(u;,),- - ,H(ufk) H(v;):(k+1)-AP = k+1<D

P(”)>— z p(u) =1 — z p(u) = Z p(v)zg

v€SVD(g) ueSVD (9) u€eSvVD(g) véSVD(g)




Open question

* Applications
* Modified Log-Sobolev inequality (MLSI) instead of spectral gap?
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