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Quantum Markov processes

  

Understand & predict how open quantum systems behave:

• Physics: simulates system coupled to a heat-bath

• Quantum computing: prepare quantum Gibbs state → optimization, 
quantum ML, candidate quantum to classical speedup

   

Hamiltonian 𝐻 ∈ ℂ2𝑛×2𝑛
, 𝐻 Hermitian

Quantum Gibbs state of 𝐻 at inverse temperature 𝛽:



Davies generator
  

• Linbladian dynamics 𝜎𝑡 = 𝑒𝑡ℒ+
𝜎0

• Hamiltonian 𝐻: describes the internal quantum system

• Jump operators 𝒮 = 𝑆

• Transition rate 𝐺: 𝐵𝐻 → ℝ≥0

ℒ(𝑓)  = 𝑖 𝐻, 𝑓 + ∑

:

model interactions with the environment

Bohr frequency: 
𝐵𝐻 = {𝜆1 − 𝜆2: 𝜆1, 𝜆2 ∈ 𝑆𝑝𝑒𝑐 𝐻 }

coherent dissipative

𝑡 → +∞
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Central question: Rate of convergence

Rate of convergence is controlled by the generator’s spectral gap

  𝜆 ℒ = 𝐸1 − 𝐸2 = |𝐸2|

Eigenvalues of generator ℒ: 0 = 𝐸1 ≥ 𝐸2 ≥ ⋯

ℒ 𝑖𝑑 = 0



Quantum vs classical walks 

ℒ
Quantum 

state ℒ
Embedded 

classical distribution

• ℒ : quantum random walk/linear operator on space of quantum states

• 𝑉0: subspace of operators that commute with 𝐻. ℒ(𝑉0) ⊆ 𝑉0

• ℒ |𝑉0
: isomorphic to classical random walk

Any Hamiltonian: Our work

Hamiltonians with simple spectrum: Temme’13



Classical walks 

ℒ |𝑉0
: isomorphic to classical random walk

For of 𝐻 𝜌 =

• Stationary distribution:

• Transition matrix:

Prop: There exists

s.t. 𝜆 ℒ |𝑉0
= spectral gap of classical Markov generator wrt 𝑈∗



Q: quantum spectral gap comparable to 
classical spectral gap?

• Physicists’ belief: yes

• Mathematicians’ findings: no, for 
some(contrived) Hamiltonian [Tem’13]
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• Physicists’ belief: yes

• Mathematicians’ findings: no, for some 
Hamiltonian [Tem’13]

• Our work: yes, for Hamiltonians H 
where Spec(𝐻) doesn’t contain a 
proper arithmetic progression.
Example: random perturbation of 
arbitrary Hamiltonian

•  Implication:
• Open the way to use classical techniques 

to analyze quantum walk

• Match physicists’ prediction
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Proof

  



Thm 1: If Spec(𝐻) doesn’t contain a PAP of length > 𝐷

𝜆(ℒ |𝑉0
) ≥ 𝜆 ℒ ≥

1

2𝐷
 𝜆(ℒ |𝑉0

)

Lem 1: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , ∃𝒰 ⊆ ℝ𝑛of Lebesgue measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, 
𝑆𝑝𝑒𝑐(𝐻𝒉) doesn’t contain a PAP with length > 2 or repeated eigenvalues.

Proof of Lem 2: [inspired by Huang-Harrow’23]

Def: Proper Arithmetic Progression of length D:
𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑑 𝐷 − 1 ⊆ 𝑆𝑝𝑒𝑐(𝐻) where 𝑑 ≠ 0

Cor 1: 𝐻𝒉 = 𝐻0 + ∑ℎ𝑖𝑍𝑖 , 𝐻0 arbitrary, ∃𝒰 ⊆ ℝ𝑛of Lebesgue measure 1 s.t. ∀ ℎ𝑖 𝑖∈ 𝒰, 
Linbladian ℒ wrt 𝐻𝒉

𝜆 ℒ = Θ 1  𝜆(ℒ |𝑉0
)
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𝜆 ℒ = min
𝜔

𝜆(ℒ|𝑉𝜔
)

𝑉0
𝑐 =∪𝜔≠0 V𝜔 𝑉𝜔: image of map 𝑓 → 𝑓 𝜔 . Invariant under ℒ
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𝑇 ෥𝜔 ≥ 0

Spectral decomposition  then rewritten as Sum-of-Square
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𝑔, 𝐻 = 0 ⇒ Spectral decomposition where 𝑢𝑖 𝑖 and 𝑣𝑖 𝑖  are 
orthonormal eigenbasis of H

AM-GM inequality:

If 𝛽𝜔 ≥ 0: show ⇒

𝜌 𝑢𝑖 , 𝜌(𝑣𝑖) are eigenvalues of 𝜌 corresponding to 𝑢𝑖 , 𝑣𝑖

If 𝛽𝜔 ≤ 0: show 𝑉𝑎𝑟(ℎ) ≥
1

𝐷
𝑉𝑎𝑟(𝑓)



𝑢𝑖 𝑖 and 𝑣𝑖 𝑖  are orthonormal eigenbasis of H, eigenvalue 𝐻 𝑢𝑖 , 𝐻(𝑣𝑖)

Assume 𝛽𝜔 ≥ 0: show ⇒

𝑓 ∈ 𝑉𝜔 ⇒ 𝐻 𝑣𝑖 = 𝐻 𝑢𝑖 − 𝜔
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𝑢𝑖 𝑖 and 𝑣𝑖 𝑖  are orthonormal eigenbasis of H, eigenvalue 𝐻 𝑢𝑖 , 𝐻(𝑣𝑖)

Assume 𝛽𝜔 ≥ 0: show ⇒

𝑓 ∈ 𝑉𝜔 ⇒ 𝐻 𝑣𝑖 = 𝐻 𝑢𝑖 − 𝜔

⇒



𝑢𝑖 𝑖 and 𝑣𝑖 𝑖  are orthonormal eigenbasis of H, eigenvalue 𝐻 𝑢𝑖 , 𝐻(𝑣𝑖)

Assume 𝛽𝜔 ≥ 0: show ⇒

⇒

෍

𝑣∉𝑆𝑉𝐷(𝑔)

𝜌 𝑣 ≥
1

𝐷 − 1
෍

𝑢∈𝑆𝑉𝐷(𝑔)

𝜌 𝑢 ⇒ 1 − ෍

𝑢∈𝑆𝑉𝐷 𝑔

𝜌 𝑢 = ෍

𝑣∉𝑆𝑉𝐷(𝑔)

𝜌 𝑣 ≥
1

𝐷

but 𝑣𝑖𝑘
∉ 𝑆𝑉𝐷(𝑔)



Open question

• Applications

• Modified Log-Sobolev inequality (MLSI) instead of spectral gap?
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