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Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via BERT-style marginal oracle

 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

______  ______  ______ kitchen today.
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Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Sample by any-order autoregression



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

______  ______  ______  ______  ______.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

______  ______  ______  ______  ______.
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Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

______  ______  ______  ______  today.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Tom  ______  ______  ______  today.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Tom  will  ______  ______  today.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Tom  will eat  ______  today.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Tom  will eat  breakfast  today.



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Sample by stochastic differential eq 
(SDE)

Denoising diffusion (DALL-E,…)

• Sample by any-order autoregression



Parallelization?
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1

• Seems inherently sequential. 
Parallelization?

• Parallel computing model:
• Many parallel processes per round

• Communication at the end of each round

• Our results: autoregression (& diffusion) 

in ෨𝑂(𝑛
1

2) rounds

 and 𝑂(𝑛 log 𝑛) total work



General 𝜇: 𝑞 𝑛 → ℝ≥0, BERT marginals 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Folklore: Θ 𝑛  oracle queries/total work

• [AGR24] : 

• Upper bound: ෨𝑂(𝑛
2

3) rounds & O 𝑛 log 𝑛  queries/total work

• Lower bound: Ω(𝑛
1

3) rounds ∀ poly-queries algorithm

• This work: 

• ෨𝑂(𝑛
1

2) rounds & O 𝑛 log 𝑛  queries/total work

• Simpler algorithm that also works for diffusion

Autoregression (ChatGPT,…)



General 𝜇: 𝑞 𝑛 → ℝ≥0, BERT marginals 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Folklore: Θ 𝑛  oracle queries/total work

• [AGR24] : 

• Upper bound: ෨𝑂(𝑛
2

3) rounds & O 𝑛 log 𝑛  queries/total work

• Lower bound: Ω(𝑛
1

3) rounds ∀ poly-queries algorithm

• This work: 

• ෨𝑂(𝑛
1

2) rounds & O 𝑛 log 𝑛  queries/total work

Autoregression (ChatGPT,…)

• BERT marginals are necessary for parallelization:
• Can’t get 𝑜(𝑛) parallel time with only fixed-order marginals 𝜇(𝑋𝑖|𝑋1:𝑖−1)



Algorithm



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝜇

𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝜈 𝒙 ⋅
𝜇

𝜈
𝒙 = 𝜇(𝑥)



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝜇

𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝜈 𝒙 ⋅
𝜇

𝜈
𝒙 = 𝜇(𝑥)

What if 
𝜇

𝜈
𝒙 > 1 ? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝜇 𝑥 , 𝜈 𝑥 }

Wrong output distribution!



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇
Accept and return 𝒚 with probability max{0,1 −

𝜈

𝜇
𝒚 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝜇 𝑥 , 𝜈 𝑥 }

→ ℙ output y = max{0, 𝜇 𝑦 − 𝜈(𝑦)}



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇 by: 𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

Accept and return 𝒚 with probability max{0,1 −
𝜈

𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution that admits fast sampler e.g. in 𝑂(1) rounds
    & can be built w/ conditional marginal/mean oracles for 𝜇

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors
• Key idea: sequentially process batches of geometrically increasing size, 

where each batch is processed in parallel



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝜇

𝜈
𝒙 }

3. For r=0,1,2,… do:
 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel
 Sample 𝒚 ∼ 𝜇 by: 

𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

 Accept and return 𝒚 with probability max{0,1 −
𝜈

𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝜇𝑆

𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 = . . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝜈𝑆

𝜇𝑆
𝒚 }

Recursive speculative rejection sampling

• 𝜈𝑆: reference distribution

• 𝜇𝑆: target distribution

The following exactly samples from 𝜇𝑆: 

• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 In O(1) rounds and O(|S|) queries,  can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



What are 𝜇𝑆 and 𝜈𝑆?

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Oracle access to BERT-style marginals 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Sample order 𝜎 ∼ Uniform 𝑆𝑛

• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝜎(𝑆) 𝑋𝜎(<𝑆) = 𝜇(𝑋𝜎(𝑎+1:𝑏)|𝑋𝜎(1:𝑎))

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝜎(𝑎+1) 𝑋𝜎(1:𝑎) ⊗ ⋯ ⊗ 𝜇 𝑋𝜎 𝑏 𝑋𝜎 1:𝑎 )
    Can sample each coordinate of 𝜈𝑆 in parallel

    b/c no dependencies

For fixed order 𝜎 , 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
𝔼𝜎∼𝑆𝑛

𝑇𝑉(𝜇𝑆, 𝜈𝑆 ]

≈ |𝑆|/ 𝑛
 

 



Analysis: high level

• Difficulty: Many parallel threads & deep recursion

 



Analysis: high level

• Difficulty: Many parallel threads & deep recursion

 



Analysis: high level

• Difficulty: Many parallel threads & deep recursion

• 𝔼 𝑇 = 𝔼[σ𝑆 𝑇𝑉 𝜇𝑆, 𝜈𝑆 ] ≈ ෨𝑂 ( 𝑛) 

 

Pinning lemma 



General 𝜇: 𝑞 𝑛 → ℝ≥0, BERT marginals 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• [AGR24] : 

• Upper bound: ෨𝑂(𝑛
2

3) rounds & O 𝑛 log 𝑛  queries/total work

• Lower bound: Ω(𝑛
1

3) rounds ∀ poly-queries algorithm

• This work: 

• ෨𝑂(𝑛
1

2) rounds & O 𝑛 log 𝑛  queries/total work

• Simpler algorithm that also works for diffusion

• Open: 
• Handling more noise via (parallelized?) back-tracking 

Summary & open questions
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