Parallel sampling via autospeculation

Thuy-Duong “June” Vuong
UC San Diego

Caltech Combinatorics Seminar, December 2025

Based on joint work with
Nima Anari, Carlo Baronio, C]J Chen, Alireza Haqji, Frederic Koehler and Anqi Li

Generative modeling

Autoregression (ChatGPT,...)

* u:lg]* - Ry

* Sample via conditional marginal oracle
u(X; = x| Xs = x)

xy ~ u(Xq), x; ~ u(X2X; = xq),
x3 ~ WXz X120 = x1.2), ...

Law(x1xy .. X)) = U — U

Denoising diffusion (DALL-E,...)

* u:R" = Ry
» Sample via conditional mean oracle

X
t,x) = E Y|Y +g="=
JOO=E, gmwoin VIV +9=1

Continuous diffusion process:
d Xt — f(t,Xt)dt + dBt

X, 1
Law r =u*xN O,?-I - U

To implement, need to truncate &
discretize

Generative modeling

Autoregression (ChatGPT,...) Denoising diffusion (DALL-E,...)
* 1 g™ - Ry * p R > Ry
* Sample via conditional marginal oracle » Sample via conditional mean oracle y
u(X; = x;|Xs = xs) — — =
i ilds S f(t, x) IEY~/,L,g~N(O,%-I) IY|Y + g t]

 In ML, oracle is learned from neural nets

* Theoretically, can evaluate/approximate oracles for certain distributions.
Ex: determinantal distribution (spanning trees, planar perfect matchings)

Generative modeling
P(X,) P(X,|X)) P(X5|X1.,) P(Xy|X1:n-1)

P R NN RN

Generative modeling
P(X,) P(X,|X)) P(X5|X1.,) P(Xy|X1:n-1)

P R NN RN

* Appears to be inherently sequential
processes

 Parallelization?

Generative modeling
P(X,) P(X,|X)) P(X3|X1.,) P(Xy|X1:n-1)

* Appears to be inherently sequential
processes

 Parallelization?

* Parallel computing model:
* Many parallel processes per round
* Input of a round depends on previous rounds

* Our results: autoregression and diffusion
1

can be parallelized in O (n2) rounds

Autoregression (ChatGPT,...)

* Folklore: ®(n) oracle queries/total work

* [AGR24] :
* Upper bound: 5(n§) rounds & O(nlogn) queries/total work
* Lower bound: Q(ng) rounds V poly-queries algorithm

* This work:
. é(n%) rounds & (z(nlog n) queries/total work

» Application: 0(n+) rounds algorithm to sample planar perfect matching

Denoising diffusion (DALL-E,...)

» Guarantee: TV (output, u * N (0,8 - I)) < ey

* [BDDD23]: O(nesz) queries, for Var(u) < R?

 [HDSA25]:0 (n2/36;3/3) rounds & O(nerZ)queries, for Var(u) < R?
» This work:0(n'/?) rounds &0 (max(nezg, R*672))queries,

for sup “X — IEM[X]||2 < R?

Denoising diffusion (DALL-E,...)

» Guarantee: TV (output, u * N (0,8 - I)) < ey

« [BDDD23]: O (neTV polylog (— = n, R)) queries, for Var(u) < R?

 [HDSA25] : O(2/3¢7 /3 polylog (— = n, R)) rounds &

0] (neﬁ? polylog (5'$' n, R))queries, for Var(u) < R?

e This work: O <n1/2 polylog (%,Ei, n, R)) rounds &
TV

1

2
0 (max(ne;&, R*6~%)polylog (%,E—,n, R))queries, for sup “X — E,[X] ||
TV

< R*

Algorithm

Rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from u:

1. Samplex ~v

2. Accept and return x with probability % (x)

— P[output x] = dv(x) 3—5 (x) =du(x)

Rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from u:

1. Samplex ~v

2. Accept and return x with probability % (x) What 1f (x) > 17

— P[output x] = dv(x) 3—5 (x) =du(x)

Speculative rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from u:

1. Samplex ~v

2. Accept and return x with probability min{1, Z—:‘ (x)}

— P|output x] = min{du(x), dv(x)}

Speculative rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from u:

1. Samplex ~v

2. Accept and return x with probability min{1, Z—:‘ (x)}

3. While not accepted do: — Ploutput x| = min{du(x), dv(x)}
Sampley ~ u

Accept and return y with probability max{0,1 — Z—Z ()}

— Ploutput y] = max{0, du(y) — dv(y)}

Recursive speculative rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from pu: How to implement?

1. Samplex ~v

2. Accept and return x with probability min{1, 3—5 (x)}

3. While not accepted do:

Sample y ~ u by: Y1:n/2~ﬂ(X1:n/2)'Yn/2+1:n ~ .uc(an/2+1:n|X1:n/2 — }’1:n/2)
Accept and return y with probability max{0,1 — ﬁ ()}

Recursive speculative rejection sampling
u: target distribution

v: reference distribution that admits fast sampler e.g. in O(1) rounds
& can be built w/ conditional marginal/mean oracles for u

The following exactly samples from pu: How to implement?

1. Samplex ~v

2. Accept and return x with probability min{1, 3—5 (x)}
3. While not accepted do:

* Fully sequential: no gain
e Fully parallel: need infinite #processors

Recursive speculative rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from pu: How to implement?

1. Samplex ~v

2. Accept and return x with probability min{1, 3—5 (x)}
3. While not accepted do:

* Fully sequential: no gain
e Fully parallel: need infinite #processors

* Keyidea: sequentially process batches of geometrically increasing size,
where each batch is processed in parallel

Recursive speculative rejection sampling
u: target distribution

v: reference distribution

The following exactly samples from u:

1. Samplex ~v

2. Accept and return x with probability min{1, 3—5 (x)}
3. Forr=0,1,2,... do:

Fori=[(1+p)",[(1+p)+1,-,[(1+ p)] — 1 do in parallel
Sample y ~ u by:

}’1:n/2"’ﬂ(X1:n/2)»Yn/2+1:n ~ .U(Xn/2+1:n|X1:n/2 = Yl:n/z)
Accept and return y with probability max{0,1 — Z—Z ()}

Recursive speculative rejection sampling

e S={a+1,,b} In O(1) rounds and O(|S|) queries, can:
)) d

* Ug: target distribution - * Compute dﬁ;

* vg: reference distribution * Sample v

The following exactly samples from ugs:

1. Sample x ~ vg
2. Accept and return x with probability min{1, Z—:‘j (x)}
3. Forr=0,1,2,... do:
Fori=[(1+p)",[(A+p)+1,-,[(1+ p)"*1] — 1 doin parallel:
Sample y ~ yig by: Set L(S) = {a +1,.., 22} R(S) = {2 + 1, ..., b)
YL(S)~HL(S) YR(S) ~ Ur(s) (- |X<R(S) = ||)’L(S))

Accept and return y with probability max{0,1 — de ()}

Analysis

Technical challenge

* Process in parallel —» runtime determined by the slowest thread

#rounds #rounds in threads generated by the while loop
TS =~ 1 + 1[x not accepted] - max{T-(S).thread #t TR(S) thread #13

* Bounding E|T| means bounding expectation of max
* Seems difficult

Analysis: high level

* Process in parallel - runtime determined by slowest thread

TS =~ 1 + 1[x not accepted] - max{T-(S).thread #t TR(S) thread #13
* Key idea: expanding T as sum of max{indicators}
e E[T] = YE[max{indicators}] = YE[) indicators] = Y.TV (vg, us)
~ 0 (Vn)

Pinning lemma

Analysis: step 1
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

TS ~ 1+ 1[xg not accepted] - max{T S)#1 TR)#1 TLS)#2 4 TR)H#2 1

S={a+1,-,b}

/_.

a+b

L(S) = {a + 1, ’T} R(S) = {aT-I—b +1,..,b}

Analysis: step 1
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)
TS ~ 1+ 1[xg not accepted] - max{T S)#1 TR)#1 TLS)#2 4 TR)H#2 1

~ 14 I5 - max{1l + [*E#to max{...} + 1 + [RE)#to max{..}}

~14+1°+ Z [°- [S1#to 4 ...

S1:child of S
to:thread index

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...

Si:childof S ¢.thread index

Recursive speculative rejection sampling

e S={a+1,-,b}, us: target distribution, vs: reference distribution

1. Sample x ~ vg
2. Accept and return x with probability min{1, % (x)} — E[I°] = TV(vs, us)
S

3. Forr=0,1,2,...do:

Fori=[(1+p)",[(1+p)"]+1,---,[(1+ p) 1] — 1 do in parallel:

Sample y ~ us by: Set L(S) = {a + 1, .. a+b} R(S) = {a—+b +1,..,b}

YL(S)~HL(S) YR(S) ~ llR(s)(|X<R(S) = ”yL(S))
Accept and return y with probability max{0,1 — de ()}

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...
l Si:childof S ¢.thread index

TV (vs, Us)

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...

Si:childof S ¢/ .thread index

E[z [S. [S1#to] = E| E[I5] x E[#threads to] X E[TV (vs,, s,)] |

to:thread index

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...

Si:childof S ¢/ .thread index

E[z [S. [S1#to] = E| E[I5] x E[#threads to] X E[TV (vs,, s,)] |
to:thread index

Next, bound product of the first two terms

Recursive speculative rejection sampling

e S={a+1,-,b}, us: target distribution, vs: reference distribution

1. Sample x ~ vg
2. Accept and return x with probability min{1, % (x)} - E[I°] = TV(vs, jus)
S

3. Forr=0,1,2,... do:

Fori=[1+p)",[(A+p)"1+1,-,[(1+p)*] —1doin parallel:

Sample v ~ ug by: Set L(S) = {a +1,. “*”} R(S) = {2+ 1, ..., b}

YL(S)~HL(S) YR(S) ~ MR(S)(|X<R(S) = ||}’L(5))

Accept and return y with probability max{0,1 — dvs ()}

1+p 1
TV(vs, us) [E[IS]

— P[y accepted] = TV (vs, us) = [E[#threads ty] = E[#y's] <

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...

Si:childof S ¢/ .thread index

E[z I5. [S#%0] = E[E[I°] x E[#threads to] x BTV (vs,, s,)]

to:thread index

< (1+p)

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[TS] ~ 1 + E[I5] + z E[Z I5. [SuHto] 4 ...

Si:childof S ¢/ .thread index

E[z [S- [Sv#to] = E| E[I5] x E[#threads to] X E[TV (vs,, s,)] |

to:thread index

< (i +p)
<1+ p)IE[TV(VS1’MS1)]

Analysis: step 2
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) = 0 (V1)

E[T®]

~ 1+ [E[IS] +(1+ p) z IE[TV(VSﬂ'uSl)]
S1:child of S

+ (1 + p)? Z E|TV (vs,, s,)] -
S,:grandchild of S

1

recursion depth

Setp = (1+p)m<0(1)

Analysis: step 3
Pinning lemma
E|T] = YE[max{indicators}] = ZIE[Z: indicators| = YTV (v, us) =~ 0 (\n)

E[TS] = 1+ E[I5] + Z E|TV (vs,, s,)] + Z E|TV(vs,, s,)] -
S1:child of S S,:grandchild of S

Reference & target distributions (v¢&jis)?

Autoregression (ChatGPT,...) Denoising diffusion (DALL-E,...)
* w: g™ - Ry * u:R" > Ry
* Sample via conditional marginal oracle * Sample via conditional mean oracle y
M(X'=X'|X5=xs) t = [E = —
L= % FED=E, iy IV +9=7]
x; ~ u(Xy), x5 ~ u(X,1X; = 0y), Continuous diffusion process:
x3 ~ U(X2|X1.2 = 01:2), . d X, = f(t,X,)dt + dB;

X; 1
Law r =u*xN O,?-I - U

Autoregression (ChatGPT,...)

* 1 g™ - Ry
e Sample via conditional marginal oracle u(X; = x;|Xs = xs)
e 1stattempt:

eS={a+1,. b} In 0(1) rounfus; can:
* us = uXslX<s) = uXa+1:p1X1:0) a Compute 7 -
* V¢ = product distribution with same marginal as ug * Sample vg

= u(Xg+11X1:0) @ uXg121X1.4) & - & u(Xp|X1:q)

—

Autoregression (ChatGPT,...)

* 1 q]™ = Ry
e Sample via conditional marginal oracle u(X; = x;|Xs = xs)
e 1stattempt:

eS={a+1,..,b}

* Us = p(XslX<s) = uXas1:01X1:0)
* V¢ = product distribution with same marginal as ug
= p(Xa411X1:0) Q@ pXgi21X1:0) Q - @ p(Xp|X1.0)

* Unfortunately» ng: descendant of root IE[TV(VS{)) :“S{))] = Q(n)

* Ex:p = Uniform({x € {0,1}":x; = x3,x3 = X4, ... })] For fixed set S,
E[TV(vi2,t1:2) + TV (V3 tza) + -1 = Q) — TV(us,vs) = Q(1)
J b/cdependencies

Autoregression (ChatGPT,...)

‘1 gq]™ = Ry
e Sample via conditional marginal oracle u(X; = x;|Xs = xs)

—

o st .
1*" attempt: For fixed set S,

*S=ta+1..b} TV (us,vs) = Q(1)

* s = u(Xs|Xcs) = p(Xas1:01X1:0) b/c dependencies

* V¢ = product distribution with same marginal as ug
— .U(Xa+1|X1:a) ® .u(Xa+2 |X1:a) ® ® U(Xblxl:a) Pinning lemma:

* Unfortunately, D.g,. gescendant of root IE[TV(VS{, , ,uS{,)] = Q(n) | Forrandom small
subset S,

TV (us,vs) = o(1)

* (Can produce random subsets by taking a random
recursive partition of |n|

Autoregression (ChatGPT,...)

‘1 gq]™ = Ry
e Sample via conditional marginal oracle u(X; = x;|Xs = xs)

—

e Solution: Sample ¢ ~ Uniform(S,,)
eS={a+1,..,b}

* Us = :u(XO'(S)|XO'(<S)) — .U(Xa(a+1:b)|Xa(1:a))
* V¢ = product distribution with same marginal as ug

= U(Xo@+1)|Xo(1:a)) ® = @ (Xow)| Xo(1:0))

For fixed set S,

TV (us,vs) = Q(1)
b/c dependencies

Pinning lemma:
For random set S,

* (Can produce random subsets by taking a random TV (us,vs) = 0(1)
recursive partition of |n|

Autoregression (ChatGPT,...)

* 1 g™ - Ry
e Sample via conditional marginal oracle u(X; = x;|Xs = xs)

—

* Solution: Sample ¢ ~ Uniform(S,,)
eS={a+1,..,b}

o pts = u(Xo(s)|Xo(<s)) = MXoar1:0) | Xo:a)
* V¢ = product distribution with same marginal as ug

= U(Xo@+1)|Xo(1:a)) ® = @ (Xow)| Xo(1:0))

For fixed set S,

TV(‘US, VS) — Q(l)
b/c dependencies

Pinning lemma:
For random set S,

- TV (us,vs) = 0o(1)
* ZSg:level—f descendant of root IE[TV(VSg) MSg)] — O(\/n log q) >

Denoising diffusion (DALL-E,...)

p: R = Ry

» Sample via conditional mean oracle: f(t,x) = [E YIY +g = %]

Y~p,g~N(071)

* Continuous diffusion process: d X; = f(¢t, X,)dt + dB,,

X; 1

t t
Discretized process w/ endpoints ty < t; <t, < - <ty = %
i

Xeoo, = Xe, + (60 Xe,)(tigq —) + N(0, (b0 —) - 1)
 With appropriate discretization, TV (X, X;) < €7y

Denoising diffusion (DALL-E,...)

* p R = Ry

» Sample via conditional mean oracle: f(t,x) = [E YIY +g = %]

Y~p,g~N (071
* Continuous diffusion process: d X; = f(¢t, X,)dt + dB,,

X, 1
Law " =u*xN O,?-I - U

* Discretized process w/ endpoints ty < t; <t, < - <ty = %

Xeooo = Xe, + (0 Xp,) (ti41 — &) + N(O, (tigr —t) - 1)
*S=ta+1..,b} 1 O(1) rounds, can:
e uc = Law ((Xti — Xti_l)fzaﬂ) _ « Compute Zﬁj
* Vs = LaW((f(ta»Xta)(ti —ti-1) + N(0, (ti11 — t) - Di—gir) * Sample vg

—

Denoising diffusion (DALL-E,...)

u:R"* - R,yw/oracle f(t,x) = E YlY +g =%]

Y~p,g~N(071)

Continuous diffusion process: d X, = f(t, X,)dt + dB;,
X

1
Law(—t =,u*]\f<0,—-1>—>u
t t
1

Discretized process w/ endpoints ty < t; < t, < - <ty = 5

Xe,, =X, + f(t0,X¢,) (i — 6) + N0, (b0 — t) - 1)

b
S={a+1,..,b},us = Law ((Xti — Xti—l)i:a+1) , Vg = Law((f(ta,Xta)(ti —ti_1) +
N, (tier =t - Dizqss b

TV (us, vs)* < IE[Z (tip1 — ti)”f(ti»xti) - f(ta»Xta)Hz]

Denoising diffusion (DALL-E,...)

X
pu:R* - Ry, w/oracle f(t,x) = Ey~u,g~N(o,%-I) YIY +g = ;]

X
t

Continuous diffusion process: d X, = f(t, X,)dt + dB, — Law() =u*xN (0% : I) > U

: . . 1
Discretized process w/ endpoints ty < t; < t, < - <ty = 5

Xeooo = Xe, + f(t0 Xe,) (i —) + N0, (g — ;) - 1)
b
S={a+1,..,b},us = Law ((Xti - X, ,)) ,vs = Law((f(ta, X¢,) (8 — timq) + N(O0, (ti41 —

b i=a+1
ti) Di—q+1)

b—1 |
TV (us,vs)? < E Z(tm —tD|If (80 Xe,) = £ (ta X)| | < TV (s, vs)? + Rty — t4)?
i=a

TV (fs5,v5)? < E|E02d (tian — |1 (6 Xe) = £t Ke)| | = EL(ts — ta) (tr(S0) — tr(Z,))]

Denoising diffusion (DALL-E,...)

 u:R" > R,,w/oracle f(t,x) = E [Y|Y+g=%]

Y~p,g~N(071)

e aen) Vs = Law((F(ta Xe,)t = tio) + N (0, (t141 —

i=a+1

 S={a+1,..,b}us=Law (X, — X,,_,)
ti))])?=a+1)

* TV(us,vs)* <E [Z?z_al(tHl —t)||f (¢ Xe,) — f(ta»Xta)Hzl < TV(fIs, vs)? + R*(tp — tg)* <
R4(tb o ta)z

o« TV(i5,v5)? <E [2?;;(ti+1 —t)||f(te Xe,) — f (ta,)?ta)llzl = E[(tp — tg) (tr(Z) — tr(Zp))]

TV (vs,, iis,)

Sp:level—¢ descendant of root

TV(VS{; :.US{:)] < dry((Xe e, (Xe)¢) sup.. + E

E
Lg:level—{’ descendant of root
n R?
<Iv3" O(tr(Zo)(Ty — To) + tr(Z¢)(To — T + ...)
< 0(Wn)

tr(Z,) <

t+ R2

Open question

* Get tight bound for autoregression.

1 1
 Currently, upper bound O (n2) but lower bound Q(n3)

* Show lower bound for denoising diffusion.

1
 Currently, upper bound O (nz) but no lower bound

	Slide 1: Parallel sampling via autospeculation
	Slide 2: Generative modeling
	Slide 3: Generative modeling
	Slide 6
	Slide 7
	Slide 9
	Slide 10: Autoregression (ChatGPT,…)
	Slide 11: Denoising diffusion (DALL-E,…)
	Slide 12: Denoising diffusion (DALL-E,…)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Technical challenge
	Slide 26: Analysis: high level
	Slide 28: Analysis: step 1
	Slide 29: Analysis: step 1
	Slide 30: Analysis: step 2
	Slide 34
	Slide 35: Analysis: step 2
	Slide 36: Analysis: step 2
	Slide 37: Analysis: step 2
	Slide 38
	Slide 39: Analysis: step 2
	Slide 40: Analysis: step 2
	Slide 41: Analysis: step 2
	Slide 42: Analysis: step 3
	Slide 43: Reference & target distributions (nu sub cap S & mu sub cap S close paren ?
	Slide 44: Autoregression (ChatGPT,…)
	Slide 45: Autoregression (ChatGPT,…)
	Slide 46: Autoregression (ChatGPT,…)
	Slide 47: Autoregression (ChatGPT,…)
	Slide 48: Autoregression (ChatGPT,…)
	Slide 49: Denoising diffusion (DALL-E,…)
	Slide 50: Denoising diffusion (DALL-E,…)
	Slide 51: Denoising diffusion (DALL-E,…)
	Slide 52: Denoising diffusion (DALL-E,…)
	Slide 53: Denoising diffusion (DALL-E,…)
	Slide 54: Open question

