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Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

𝑥1 ∼ 𝜇 𝑋1 , 𝑥2 ∼ 𝜇 𝑋2 𝑋1 = 𝑥1 ,
𝑥3 ∼ 𝜇 𝑋2 𝑋1:2 = 𝑥1:2 , …

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

Continuous diffusion process:
𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

To implement, need to truncate  & 
discretize

𝐿𝑎𝑤 𝑥1𝑥2 … 𝑥𝑛 = 𝜇 → 𝜇



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• In ML, oracle is learned from neural nets

• Theoretically, can evaluate/approximate oracles for certain distributions.
Ex: determinantal distribution (spanning trees, planar perfect matchings)



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1

• Appears to be inherently sequential 
processes

• Parallelization?



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1

• Appears to be inherently sequential 
processes

• Parallelization?

• Parallel computing model:
• Many parallel processes per round

• Input of a round depends on previous rounds

• Our results: autoregression and diffusion 

can be parallelized in ෨𝑂(𝑛
1

2) rounds



• Folklore: Θ 𝑛  oracle queries/total work

• [AGR24] : 

• Upper bound: ෨𝑂(𝑛
2

3) rounds & O 𝑛 log 𝑛  queries/total work

• Lower bound: Ω(𝑛
1

3) rounds ∀ poly-queries algorithm

• This work: 

• ෨𝑂(𝑛
1

2) rounds & O 𝑛 log 𝑛  queries/total work

• Application: ෨𝑂(𝑛
1

4) rounds algorithm to sample planar perfect matching 

Autoregression (ChatGPT,…)



• Guarantee: 𝑇𝑉 output, 𝜇 ∗ 𝒩 0, 𝛿 ⋅ 𝐼 ≤ 𝜖TV

• [BDDD23]: ෩O 𝑛𝜖𝑇𝑉
−2 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• [HDSA25] :෩O 𝑛2/3𝜖𝑇𝑉
−4/3

 rounds & O 𝑛𝜖𝑇𝑉
−2 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• This work:෩O 𝑛1/2  rounds &෩O max(𝑛𝜖𝑇𝑉
−2, 𝑅4𝛿−2 ) queries, 

  for sup 𝑋 − 𝔼𝜇 𝑋
2

≤ 𝑅2

Denoising diffusion (DALL-E,…)



• Guarantee: 𝑇𝑉 output, 𝜇 ∗ 𝒩 0, 𝛿 ⋅ 𝐼 ≤ 𝜖TV

• [BDDD23]: O 𝑛𝜖𝑇𝑉
−2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• [HDSA25] : O 𝑛2/3𝜖𝑇𝑉
−4/3

 𝑝𝑜𝑙𝑦𝑙𝑜𝑔
1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  rounds &   

 O 𝑛𝜖𝑇𝑉
−2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• This work: O 𝑛1/2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔
1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  rounds & 

O max(𝑛𝜖𝑇𝑉
−2, 𝑅4𝛿−2 )𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅 queries, for sup 𝑋 − 𝔼𝜇 𝑋

2
≤ 𝑅2

Denoising diffusion (DALL-E,…)



Algorithm



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝑑𝜇

𝑑𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝑑𝜈 𝒙 ⋅
𝑑𝜇

𝑑𝜈
𝒙 = 𝑑𝜇(𝑥)



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝑑𝜇

𝑑𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝑑𝜈 𝒙 ⋅
𝑑𝜇

𝑑𝜈
𝒙 = 𝑑𝜇(𝑥)

What if 
𝑑𝜇

𝑑𝜈
𝒙 > 1 ? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝑑𝜇 𝑥 , 𝑑𝜈 𝑥 }



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇

Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝑑𝜇 𝑥 , 𝑑𝜈 𝑥 }

→ ℙ output y = max{0, 𝑑𝜇 𝑦 − 𝑑𝜈(𝑦)}



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇 by: 𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution that admits fast sampler e.g. in 𝑂(1) rounds
    & can be built w/ conditional marginal/mean oracles for 𝜇

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors
• Key idea: sequentially process batches of geometrically increasing size, 

where each batch is processed in parallel



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. For r=0,1,2,… do:
 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel
 Sample 𝒚 ∼ 𝜇 by: 

𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling

• 𝜈𝑆: reference distribution

• 𝜇𝑆: target distribution

The following exactly samples from 𝜇𝑆: 

• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 In O(1) rounds and O(|S|) queries,  can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Analysis



Technical challenge

• Process in parallel → runtime determined by the slowest thread

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇𝐿 S ,thread #𝑡 + 𝑇𝑅 S ,thread #𝑡}

• Bounding 𝔼[𝑇] means bounding expectation of max

• Seems difficult

#rounds in threads generated by the while loop#rounds



Analysis: high level

• Process in parallel → runtime determined by slowest thread

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇𝐿 S ,thread #𝑡 + 𝑇𝑅 S ,thread #𝑡}

• Key idea: expanding 𝑇 as sum of max{indicators}

• 𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[∑ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆)

                ≈ ෨𝑂 ( 𝑛) 

Pinning lemma 



Analysis: step 1

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇L(S),#1 + 𝑇𝑅(𝑆),#1, 𝑇L(S),#2 + 𝑇𝑅(𝑆),#2, … }

𝑆 = 𝑎 + 1, ⋯ , 𝑏

L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
 R S = {

𝑎 + 𝑏

2
+ 1, … , 𝑏}



Analysis: step 1

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇L(S),#1 + 𝑇𝑅(𝑆),#1, 𝑇L(S),#2 + 𝑇𝑅(𝑆),#2, … }

≈ 1 + 𝐼𝑆 ⋅ max{1 + 𝐼𝐿 𝑆 ,#𝑡0 max … + 1 + 𝐼𝑅 𝑆 ,#𝑡0 max{…}}

≈ 1 + 𝐼𝑆 + ෍

 𝑆1:child of S
𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0 + ⋯



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling
• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 , 𝜇𝑆: target distribution, 𝜈𝑆: reference distribution 

→ 𝔼[I𝑆] = TV(𝜈𝑆, 𝜇𝑆) 



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝑇𝑉(𝜈𝑆, 𝜇𝑆)



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

Next, bound product of the first two terms



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling
• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 , 𝜇𝑆: target distribution, 𝜈𝑆: reference distribution 

→ 𝔼[I𝑆] = TV(𝜈𝑆, 𝜇𝑆) 

→ ℙ 𝒚 accepted = TV(𝜈𝑆, 𝜇𝑆) ⇒ 𝔼 #threads t0 = 𝔼 #𝑦′𝑠 ≤
1 + 𝜌

TV 𝜈𝑆, 𝜇𝑆
=

1

𝔼[I𝑆]



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

C
≤ (1 + 𝜌)



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

≤ (1 + 𝜌)

≤ 1 + 𝜌 𝔼[𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

]



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆]

≈ 1 + 𝔼[𝐼𝑆] + 1 + 𝜌 ෍

𝑆1:child of S

𝔼 𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

+ (1 + 𝜌)2 ෍

𝑆2:grandchild of S

𝔼 𝑇𝑉 𝜈𝑆2
, 𝜇𝑆2

…

Set 𝜌 =
1

recursion depth
: 1 + 𝜌 𝑚 ≤ 𝑂(1)



Analysis: step 3

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼 𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

+ ෍

𝑆2:grandchild of S

𝔼 𝑇𝑉 𝜈𝑆2
, 𝜇𝑆2

…



Reference & target distributions (𝜈𝑆&𝜇𝑆)?

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

𝑥1 ∼ 𝜇 𝑋1 , 𝑥2 ∼ 𝜇 𝑋2 𝑋1 = 𝜎1 ,
𝑥3 ∼ 𝜇 𝑋2 𝑋1:2 = 𝜎1:2 , …

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

Continuous diffusion process:
𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

In O(1) rounds, can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

• Unfortunately, ∑𝑆ℓ: descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= Ω(𝑛)

• Ex:𝜇 = Uniform( x ∈ 0,1 𝑛: 𝑥1 = 𝑥2, 𝑥3 = 𝑥4, … )

𝔼 𝑇𝑉 𝜈1:2 , 𝜇1:2 + 𝑇𝑉 𝜈3:4 , 𝜇3:4 + ⋯ = Ω(𝑛)

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

• Unfortunately, ∑𝑆ℓ: descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= Ω(𝑛)

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random small 
subset S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 

• Can produce random subsets by taking a random 
recursive partition of [n]



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Solution: Sample 𝜎 ∼ Uniform 𝑆𝑛

• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝜎(𝑆) 𝑋𝜎(<𝑆) = 𝜇(𝑋𝜎(𝑎+1:𝑏)|𝑋𝜎(1:𝑎))

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝜎(𝑎+1) 𝑋𝜎(1:𝑎) ⊗ ⋯ ⊗ 𝜇 𝑋𝜎(𝑏) 𝑋𝜎(1:𝑎))

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 

• Can produce random subsets by taking a random 
recursive partition of [n]



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Solution: Sample 𝜎 ∼ Uniform 𝑆𝑛

• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝜎(𝑆) 𝑋𝜎(<𝑆) = 𝜇(𝑋𝜎(𝑎+1:𝑏)|𝑋𝜎(1:𝑎))

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝜎(𝑎+1) 𝑋𝜎(1:𝑎) ⊗ ⋯ ⊗ 𝜇 𝑋𝜎(𝑏) 𝑋𝜎(1:𝑎))

• ∑𝑆ℓ:level−ℓ descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= O( 𝑛 log 𝑞 )

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle: 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡 , 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• With appropriate discretization, 𝑇𝑉 ത𝑋𝑡 , 𝑋𝑡 ≤ 𝜖𝑇𝑉



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle: 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡 , 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 ,

• 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 

• 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎 , 𝑋𝑡𝑎
𝑡𝑖 − 𝑡𝑖−1 + 𝒩 0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1

𝑏 ) 

In O(1) rounds, can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡, 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 +

𝒩 0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼[෍

𝑖=𝑎

𝑏−1

𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
]



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡  → 𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 + 𝒩(

)

0, (

)

𝑡𝑖+1 −

𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼 ෍

𝑖=𝑎

𝑏−1

𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
≤ 𝑇𝑉 ҧ𝜇𝑆, 𝜈𝑆

2 + 𝑅4 𝑡𝑏 − 𝑡𝑎
2

 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2  ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , ത𝑋𝑡𝑖
− 𝑓 𝑡𝑎, ത𝑋𝑡𝑎

2
= 𝔼[ 𝑡𝑏 − 𝑡𝑎 (𝑡𝑟 Σ𝑎 − 𝑡𝑟 Σ𝑏 )] 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 + 𝒩(

)

0, (

)

𝑡𝑖+1 −

𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

• 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
≤ 𝑇𝑉 ҧ𝜇𝑆, 𝜈𝑆

2 + 𝑅4 𝑡𝑏 − 𝑡𝑎
2 ≼

𝑅4 𝑡𝑏 − 𝑡𝑎
2

• 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2  ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖, ത𝑋𝑡𝑖
− 𝑓 𝑡𝑎, ത𝑋𝑡𝑎

2
= 𝔼[ 𝑡𝑏 − 𝑡𝑎 (𝑡𝑟 Σ𝑎 − 𝑡𝑟 Σ𝑏 )] 

≤
𝑛

𝑁
⋅

𝑅2

𝛿
+  𝑂 𝑡𝑟 Σ0 𝑇1 − 𝑇0 + 𝑡𝑟 Σ𝑇1

𝑇2 − 𝑇1 + …

≤ ෨𝑂( 𝑛)

≤ 𝑑𝑇𝑉 𝑋𝑡 𝑡, 𝑋𝑡 𝑡 sup. . + 𝔼 ෍

𝑆ℓ:level−ℓ descendant of root

𝑇𝑉 𝜈𝑆ℓ , ҧ𝜇𝑆ℓ
𝔼 ෍

𝑆ℓ:level−ℓ descendant of root

𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ

𝑡𝑟 Σ𝑡 ≤
𝑛

𝑡 + 𝑅−2



Open question

• Get tight bound for autoregression.

• Currently, upper bound 𝑂(𝑛
1

2) but lower bound Ω(𝑛
1

3)

• Show lower bound for denoising diffusion.

• Currently, upper bound 𝑂(𝑛
1

2) but no lower bound
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