
Parallel sampling via autospeculation

Thuy-Duong “June” Vuong

UC San Diego

Caltech Combinatorics Seminar, December 2025

Based on joint work with 
Nima Anari, Carlo Baronio, CJ Chen, Alireza Haqi, Frederic Koehler and Anqi Li



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

𝑥1 ∼ 𝜇 𝑋1 , 𝑥2 ∼ 𝜇 𝑋2 𝑋1 = 𝑥1 ,
𝑥3 ∼ 𝜇 𝑋2 𝑋1:2 = 𝑥1:2 , …

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

Continuous diffusion process:
𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

To implement, need to truncate  & 
discretize

𝐿𝑎𝑤 𝑥1𝑥2 … 𝑥𝑛 = 𝜇 → 𝜇



Generative modeling

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• In ML, oracle is learned from neural nets

• Theoretically, can evaluate/approximate oracles for certain distributions.
Ex: determinantal distribution (spanning trees, planar perfect matchings)



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1

• Appears to be inherently sequential 
processes

• Parallelization?



Generative modeling
ℙ 𝑋1 ℙ 𝑋2 𝑋1 ℙ 𝑋3 𝑋1:2

ℙ 𝑋𝑁 𝑋1:𝑁−1

• Appears to be inherently sequential 
processes

• Parallelization?

• Parallel computing model:
• Many parallel processes per round

• Input of a round depends on previous rounds

• Our results: autoregression and diffusion 

can be parallelized in ෨𝑂(𝑛
1

2) rounds



• Folklore: Θ 𝑛  oracle queries/total work

• [AGR24] : 

• Upper bound: ෨𝑂(𝑛
2

3) rounds & O 𝑛 log 𝑛  queries/total work

• Lower bound: Ω(𝑛
1

3) rounds ∀ poly-queries algorithm

• This work: 

• ෨𝑂(𝑛
1

2) rounds & O 𝑛 log 𝑛  queries/total work

• Application: ෨𝑂(𝑛
1

4) rounds algorithm to sample planar perfect matching 

Autoregression (ChatGPT,…)



• Guarantee: 𝑇𝑉 output, 𝜇 ∗ 𝒩 0, 𝛿 ⋅ 𝐼 ≤ 𝜖TV

• [BDDD23]: ෩O 𝑛𝜖𝑇𝑉
−2 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• [HDSA25] :෩O 𝑛2/3𝜖𝑇𝑉
−4/3

 rounds & O 𝑛𝜖𝑇𝑉
−2 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• This work:෩O 𝑛1/2  rounds &෩O max(𝑛𝜖𝑇𝑉
−2, 𝑅4𝛿−2 ) queries, 

  for sup 𝑋 − 𝔼𝜇 𝑋
2

≤ 𝑅2

Denoising diffusion (DALL-E,…)



• Guarantee: 𝑇𝑉 output, 𝜇 ∗ 𝒩 0, 𝛿 ⋅ 𝐼 ≤ 𝜖TV

• [BDDD23]: O 𝑛𝜖𝑇𝑉
−2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• [HDSA25] : O 𝑛2/3𝜖𝑇𝑉
−4/3

 𝑝𝑜𝑙𝑦𝑙𝑜𝑔
1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  rounds &   

 O 𝑛𝜖𝑇𝑉
−2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅 queries, for 𝑉𝑎𝑟 𝜇 ≤ 𝑅2

• This work: O 𝑛1/2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔
1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅  rounds & 

O max(𝑛𝜖𝑇𝑉
−2, 𝑅4𝛿−2 )𝑝𝑜𝑙𝑦𝑙𝑜𝑔

1

𝛿
,

1

𝜖𝑇𝑉
, 𝑛, 𝑅 queries, for sup 𝑋 − 𝔼𝜇 𝑋

2
≤ 𝑅2

Denoising diffusion (DALL-E,…)



Algorithm



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝑑𝜇

𝑑𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝑑𝜈 𝒙 ⋅
𝑑𝜇

𝑑𝜈
𝒙 = 𝑑𝜇(𝑥)



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability 
𝑑𝜇

𝑑𝜈
𝒙  

Rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = 𝑑𝜈 𝒙 ⋅
𝑑𝜇

𝑑𝜈
𝒙 = 𝑑𝜇(𝑥)

What if 
𝑑𝜇

𝑑𝜈
𝒙 > 1 ? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝑑𝜇 𝑥 , 𝑑𝜈 𝑥 }



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇

Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 

→ ℙ output x = min{𝑑𝜇 𝑥 , 𝑑𝜈 𝑥 }

→ ℙ output y = max{0, 𝑑𝜇 𝑦 − 𝑑𝜈(𝑦)}



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
Sample 𝒚 ∼ 𝜇 by: 𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution that admits fast sampler e.g. in 𝑂(1) rounds
    & can be built w/ conditional marginal/mean oracles for 𝜇

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. While not accepted do: 
…

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: How to implement? 

• Fully sequential: no gain
• Fully parallel: need infinite #processors
• Key idea: sequentially process batches of geometrically increasing size, 

where each batch is processed in parallel



1. Sample 𝒙 ∼ 𝜈

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇

𝑑𝜈
𝒙 }

3. For r=0,1,2,… do:
 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel
 Sample 𝒚 ∼ 𝜇 by: 

𝑦1:𝑛/2~𝜇 𝑋1:𝑛/2 , 𝑦𝑛/2+1∶𝑛 ∼ 𝜇(𝑋𝑛/2+1∶𝑛|𝑋1:𝑛/2 = 𝑦1:𝑛/2)

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈

𝑑𝜇
𝒚 }

Recursive speculative rejection sampling

𝜈: reference distribution

𝜇: target distribution

The following exactly samples from 𝜇: 



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling

• 𝜈𝑆: reference distribution

• 𝜇𝑆: target distribution

The following exactly samples from 𝜇𝑆: 

• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 In O(1) rounds and O(|S|) queries,  can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Analysis



Technical challenge

• Process in parallel → runtime determined by the slowest thread

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇𝐿 S ,thread #𝑡 + 𝑇𝑅 S ,thread #𝑡}

• Bounding 𝔼[𝑇] means bounding expectation of max

• Seems difficult

#rounds in threads generated by the while loop#rounds



Analysis: high level

• Process in parallel → runtime determined by slowest thread

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇𝐿 S ,thread #𝑡 + 𝑇𝑅 S ,thread #𝑡}

• Key idea: expanding 𝑇 as sum of max{indicators}

• 𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[∑ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆)

                ≈ ෨𝑂 ( 𝑛) 

Pinning lemma 



Analysis: step 1

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇L(S),#1 + 𝑇𝑅(𝑆),#1, 𝑇L(S),#2 + 𝑇𝑅(𝑆),#2, … }

𝑆 = 𝑎 + 1, ⋯ , 𝑏

L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
 R S = {

𝑎 + 𝑏

2
+ 1, … , 𝑏}



Analysis: step 1

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝑇𝑆 ≈ 1 + 𝟏[𝒙𝑆 not accepted] ⋅ max{𝑇L(S),#1 + 𝑇𝑅(𝑆),#1, 𝑇L(S),#2 + 𝑇𝑅(𝑆),#2, … }

≈ 1 + 𝐼𝑆 ⋅ max{1 + 𝐼𝐿 𝑆 ,#𝑡0 max … + 1 + 𝐼𝑅 𝑆 ,#𝑡0 max{…}}

≈ 1 + 𝐼𝑆 + ෍

 𝑆1:child of S
𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0 + ⋯



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling
• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 , 𝜇𝑆: target distribution, 𝜈𝑆: reference distribution 

→ 𝔼[I𝑆] = TV(𝜈𝑆, 𝜇𝑆) 



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝑇𝑉(𝜈𝑆, 𝜇𝑆)



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

Next, bound product of the first two terms



1. Sample 𝒙 ∼ 𝜈𝑆

2. Accept and return 𝒙 with probability min{1,
𝑑𝜇𝑆

𝑑𝜈𝑆
𝒙 }

3. For r=0,1,2,… do:

 For 𝑖 = 1 + 𝜌 𝑟 , 1 + 𝜌 𝑟 + 1, ⋯ , 1 + 𝜌 𝑟+1 − 1 do in parallel:

 Sample 𝒚 ∼ 𝜇𝑆 by: Set L 𝑆 = 𝑎 + 1, … ,
𝑎+𝑏

2
, R S = {

𝑎+𝑏

2
+ 1, … , 𝑏}

𝑦𝐿(𝑆)~𝜇𝐿(𝑆), 𝑦𝑅 𝑆 ∼ 𝜇𝑅 𝑆 (⋅ |𝑋<𝑅 𝑆 =. . ||𝑦𝐿(𝑆))

 Accept and return 𝒚 with probability max{0,1 −
𝑑𝜈𝑆

𝑑𝜇𝑆
𝒚 }

Recursive speculative rejection sampling
• 𝑆 = 𝑎 + 1, ⋯ , 𝑏 , 𝜇𝑆: target distribution, 𝜈𝑆: reference distribution 

→ 𝔼[I𝑆] = TV(𝜈𝑆, 𝜇𝑆) 

→ ℙ 𝒚 accepted = TV(𝜈𝑆, 𝜇𝑆) ⇒ 𝔼 #threads t0 = 𝔼 #𝑦′𝑠 ≤
1 + 𝜌

TV 𝜈𝑆, 𝜇𝑆
=

1

𝔼[I𝑆]



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

C
≤ (1 + 𝜌)



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] + ⋯

𝔼[ ෍
 

𝑡0:thread index

 𝐼𝑆⋅ 𝐼𝑆1,#𝑡0] =  𝔼  𝔼[𝐼𝑆] × 𝔼[#threads t0] × 𝔼[𝑇𝑉(𝜈𝑆1
, 𝜇𝑆1

)] 

≤ (1 + 𝜌)

≤ 1 + 𝜌 𝔼[𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

]



Analysis: step 2

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆]

≈ 1 + 𝔼[𝐼𝑆] + 1 + 𝜌 ෍

𝑆1:child of S

𝔼 𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

+ (1 + 𝜌)2 ෍

𝑆2:grandchild of S

𝔼 𝑇𝑉 𝜈𝑆2
, 𝜇𝑆2

…

Set 𝜌 =
1

recursion depth
: 1 + 𝜌 𝑚 ≤ 𝑂(1)



Analysis: step 3

𝔼 𝑇 = ∑𝔼[max{𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠}] ≈ ∑𝔼[෍ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠] ≈ ∑𝑇𝑉(𝜈𝑆, 𝜇𝑆) ≈ ෨𝑂 ( 𝑛)

 

Pinning lemma 

𝔼[𝑇𝑆] ≈ 1 + 𝔼[𝐼𝑆] + ෍

𝑆1:child of S

𝔼 𝑇𝑉 𝜈𝑆1
, 𝜇𝑆1

+ ෍

𝑆2:grandchild of S

𝔼 𝑇𝑉 𝜈𝑆2
, 𝜇𝑆2

…



Reference & target distributions (𝜈𝑆&𝜇𝑆)?

Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 
𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

𝑥1 ∼ 𝜇 𝑋1 , 𝑥2 ∼ 𝜇 𝑋2 𝑋1 = 𝜎1 ,
𝑥3 ∼ 𝜇 𝑋2 𝑋1:2 = 𝜎1:2 , …

Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle

𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1
𝑡⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

Continuous diffusion process:
𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

In O(1) rounds, can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

• Unfortunately, ∑𝑆ℓ: descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= Ω(𝑛)

• Ex:𝜇 = Uniform( x ∈ 0,1 𝑛: 𝑥1 = 𝑥2, 𝑥3 = 𝑥4, … )

𝔼 𝑇𝑉 𝜈1:2 , 𝜇1:2 + 𝑇𝑉 𝜈3:4 , 𝜇3:4 + ⋯ = Ω(𝑛)

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• 1st attempt: 
• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝑆 𝑋<𝑆 = 𝜇(𝑋𝑎+1:𝑏|𝑋1:𝑎)

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝑎+1 𝑋1:𝑎 ⊗ 𝜇 𝑋𝑎+2 𝑋1:𝑎 ⊗ ⋯ ⊗ 𝜇 𝑋𝑏 𝑋1:𝑎)

• Unfortunately, ∑𝑆ℓ: descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= Ω(𝑛)

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random small 
subset S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 

• Can produce random subsets by taking a random 
recursive partition of [n]



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Solution: Sample 𝜎 ∼ Uniform 𝑆𝑛

• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝜎(𝑆) 𝑋𝜎(<𝑆) = 𝜇(𝑋𝜎(𝑎+1:𝑏)|𝑋𝜎(1:𝑎))

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝜎(𝑎+1) 𝑋𝜎(1:𝑎) ⊗ ⋯ ⊗ 𝜇 𝑋𝜎(𝑏) 𝑋𝜎(1:𝑎))

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 

• Can produce random subsets by taking a random 
recursive partition of [n]



Autoregression (ChatGPT,…)

• 𝜇 ∶ 𝑞 𝑛 → ℝ≥0

• Sample via conditional marginal oracle 𝜇 𝑋𝑖 = 𝑥𝑖|𝑋𝑆 = 𝑥𝑆

• Solution: Sample 𝜎 ∼ Uniform 𝑆𝑛

• S = 𝑎 + 1, . . , 𝑏

• 𝜇𝑆 = 𝜇 𝑋𝜎(𝑆) 𝑋𝜎(<𝑆) = 𝜇(𝑋𝜎(𝑎+1:𝑏)|𝑋𝜎(1:𝑎))

• 𝜈𝑆 = product distribution with same marginal as 𝜇𝑆

          = 𝜇 𝑋𝜎(𝑎+1) 𝑋𝜎(1:𝑎) ⊗ ⋯ ⊗ 𝜇 𝑋𝜎(𝑏) 𝑋𝜎(1:𝑎))

• ∑𝑆ℓ:level−ℓ descendant of root 𝔼 𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ
= O( 𝑛 log 𝑞 )

For fixed set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = Ω 1
b/c dependencies 

Pinning lemma:
For random set S, 
𝑇𝑉(𝜇𝑆, 𝜈𝑆) = o(1)
 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle: 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡 , 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• With appropriate discretization, 𝑇𝑉 ത𝑋𝑡 , 𝑋𝑡 ≤ 𝜖𝑇𝑉



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0

• Sample via conditional mean oracle: 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡 , 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 ,

• 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 

• 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎 , 𝑋𝑡𝑎
𝑡𝑖 − 𝑡𝑖−1 + 𝒩 0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1

𝑏 ) 

In O(1) rounds, can:

• Compute 
𝑑𝜇𝑆

𝑑𝜈𝑆

• Sample 𝜈𝑆 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡, 

𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 +

𝒩 0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼[෍

𝑖=𝑎

𝑏−1

𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
]



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• Continuous diffusion process: 𝑑 ത𝑋𝑡 = 𝑓 𝑡, ത𝑋𝑡 𝑑𝑡 + 𝑑𝐵𝑡  → 𝐿𝑎𝑤
𝑋𝑡

𝑡
= 𝜇 ∗ 𝒩 0,

1

𝑡
⋅ 𝐼 → 𝜇

• Discretized process w/ endpoints 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < tN =
1

𝛿
: 

𝑋𝑡𝑖+1
= 𝑋𝑡𝑖

+ 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
t𝑖+1 − 𝑡𝑖 + 𝒩(0, 𝑡𝑖+1 − 𝑡𝑖 ⋅ 𝐼)

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 + 𝒩(

)

0, (

)

𝑡𝑖+1 −

𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼 ෍

𝑖=𝑎

𝑏−1

𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
≤ 𝑇𝑉 ҧ𝜇𝑆, 𝜈𝑆

2 + 𝑅4 𝑡𝑏 − 𝑡𝑎
2

 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2  ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , ത𝑋𝑡𝑖
− 𝑓 𝑡𝑎, ത𝑋𝑡𝑎

2
= 𝔼[ 𝑡𝑏 − 𝑡𝑎 (𝑡𝑟 Σ𝑎 − 𝑡𝑟 Σ𝑏 )] 



Denoising diffusion (DALL-E,…)

• 𝜇 ∶ ℝ𝑛 → ℝ≥0 w/ oracle 𝑓 𝑡, 𝑥 = 𝔼
𝑌∼𝜇,𝑔∼𝒩(0,

1

𝑡
⋅𝐼) 

[𝑌|𝑌 + 𝑔 =
𝑥

𝑡
]

• S = 𝑎 + 1, . . , 𝑏 , 𝜇𝑆 = 𝐿𝑎𝑤 𝑋𝑡𝑖
− 𝑋𝑡𝑖−1 𝑖=𝑎+1

𝑏
 , 𝜈𝑆 = 𝐿𝑎𝑤((𝑓 𝑡𝑎, 𝑋𝑡𝑎

𝑡𝑖 − 𝑡𝑖−1 + 𝒩(

)

0, (

)

𝑡𝑖+1 −

𝑡𝑖 ⋅ 𝐼 𝑖=𝑎+1
𝑏 ) 

• 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2 ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖 , 𝑋𝑡𝑖
− 𝑓 𝑡𝑎, 𝑋𝑡𝑎

2
≤ 𝑇𝑉 ҧ𝜇𝑆, 𝜈𝑆

2 + 𝑅4 𝑡𝑏 − 𝑡𝑎
2 ≼

𝑅4 𝑡𝑏 − 𝑡𝑎
2

• 𝑇𝑉 𝜇𝑆, 𝜈𝑆
2  ≤ 𝔼 ∑𝑖=𝑎

𝑏−1 𝑡𝑖+1 − 𝑡𝑖 𝑓 𝑡𝑖, ത𝑋𝑡𝑖
− 𝑓 𝑡𝑎, ത𝑋𝑡𝑎

2
= 𝔼[ 𝑡𝑏 − 𝑡𝑎 (𝑡𝑟 Σ𝑎 − 𝑡𝑟 Σ𝑏 )] 

≤
𝑛

𝑁
⋅

𝑅2

𝛿
+  𝑂 𝑡𝑟 Σ0 𝑇1 − 𝑇0 + 𝑡𝑟 Σ𝑇1

𝑇2 − 𝑇1 + …

≤ ෨𝑂( 𝑛)

≤ 𝑑𝑇𝑉 𝑋𝑡 𝑡, 𝑋𝑡 𝑡 sup. . + 𝔼 ෍

𝑆ℓ:level−ℓ descendant of root

𝑇𝑉 𝜈𝑆ℓ , ҧ𝜇𝑆ℓ
𝔼 ෍

𝑆ℓ:level−ℓ descendant of root

𝑇𝑉 𝜈𝑆ℓ , 𝜇𝑆ℓ

𝑡𝑟 Σ𝑡 ≤
𝑛

𝑡 + 𝑅−2



Open question

• Get tight bound for autoregression.

• Currently, upper bound 𝑂(𝑛
1

2) but lower bound Ω(𝑛
1

3)

• Show lower bound for denoising diffusion.

• Currently, upper bound 𝑂(𝑛
1

2) but no lower bound
 


	Slide 1: Parallel sampling via autospeculation
	Slide 2: Generative modeling
	Slide 3: Generative modeling
	Slide 6
	Slide 7
	Slide 9
	Slide 10: Autoregression (ChatGPT,…)
	Slide 11: Denoising diffusion (DALL-E,…)
	Slide 12: Denoising diffusion (DALL-E,…)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Technical challenge
	Slide 26: Analysis: high level
	Slide 28: Analysis: step 1
	Slide 29: Analysis: step 1
	Slide 30: Analysis: step 2
	Slide 34
	Slide 35: Analysis: step 2
	Slide 36: Analysis: step 2
	Slide 37: Analysis: step 2
	Slide 38
	Slide 39: Analysis: step 2
	Slide 40: Analysis: step 2
	Slide 41: Analysis: step 2
	Slide 42: Analysis: step 3
	Slide 43: Reference & target distributions (nu sub cap S & mu sub cap S close paren ?
	Slide 44: Autoregression (ChatGPT,…)
	Slide 45: Autoregression (ChatGPT,…)
	Slide 46: Autoregression (ChatGPT,…)
	Slide 47: Autoregression (ChatGPT,…)
	Slide 48: Autoregression (ChatGPT,…)
	Slide 49: Denoising diffusion (DALL-E,…)
	Slide 50: Denoising diffusion (DALL-E,…)
	Slide 51: Denoising diffusion (DALL-E,…)
	Slide 52: Denoising diffusion (DALL-E,…)
	Slide 53: Denoising diffusion (DALL-E,…)
	Slide 54: Open question

