Optimal Sublinear Sampling of Spanning
Trees and Determinantal Point Processes via
Average-Case Entropic Independence
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Sampling from a distribution

* Given access to density function u: 0 = R, output x in  s.t.
Plx] o< u(x)
E.g.: (sampling problems)

o random spanning free [Aldous-Broder’90, Colbourn-Myrvold-Neufeld’96, Kelner-Madry’09,
Madry-Straszak-Tarnawski’15, Schild’18, Anari-Liu-OveisGharan-Vinzant-V.—STOC’'21]

matroid bases [Anari-Liu-OveisGharan-Vinzant—STOC’19,Cryan-Guo-Mousa—FOCS'19]



Sampling from a distribution

* Given access to density function u: 0 = R, output x in  s.t.
Plx] o< u(x)
» Sufficient to approximately sample i.e. output x according to P s.t.

dry(P,P) =Y |P(x) — P(x)|<0.01



Overview

1. Motivation
 Random spanning trees
* Determinantal point processes

* Improved entropic independence under uniform marginals



Spanning tree

Given graph G = G(V,E), T € E is a spanning tree of G if T has no
loop and |T| = |V| — 1.




Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

Application:
* Travelling salesman (Christofides algorithm, [karlin-klein-OveisGharan'21])

¢ Graph Sparsification [Goyal-Rademacher-Vempala’09,Kyng-Song’18]



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

To find one spanning tree, need Q(|E|) time.
= need Q(|E]|) time to sample
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Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

To find one spanning tree, need Q(|E|) time.

= need Q(|E]|) time to sample. This is tight!

[Schild’'18] O(|E|1*€) for any € > 0.

[Anari-Liu-OveisGharan-Vinzant-Vuong’21] O(| E [log#|E|) Simpler algorithm + analysis



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

To find one spanning tree, need Q(|E|) time.

= need Q(|E|) time to sample. This is tight!
[Schild’'18] O(|E|1*€) for any € > 0.
[Anari-Liu-OveisGharan-Vinzant-Vuong’'21] O(|E|log2 |E|) Simpler algorithm + analysis

Can we do better than linear time?



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

Can we produce sample in sublinear time after preprocessing?



Sampling random spanning trees

1
spanning—trees
Can we produce sample in sublinear time after preprocessing?

YES!

Given G, output spanning tree T with probability "

Idea:
1. Make all edges equal (having the same marginal under A
the uniform spanning tree distributions) via subdividing edges

1. Apply sampling algorithm from

[Anari-Liu-OveisGharan-Vinzant-Vuong’21] (up-down walk) /\<‘




Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

Can we produce sample in sublinear time after preprocessing?
YES!

e

[Anari-Liu-Vuong--FOCS’'22]
After O (|E|) preprocessing time, can sample a random spanning
tree in O(|V]) time.

A




Other applications

Determinantal point processes (DPP):
(PSD) matrix L € R™™: u; (S) = det(Lss) for [S| =k

Applications: random linear algebra, machine learning
(recommender system)
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Other applications

Determinantal point processes (DPP):
(PSD) matrix L € R™™: u; (S) = det(Lss) for [S| =k

Applications: random linear algebra, machine learning
(recommender system)
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[Anari-Liu-Vuong--FOCS’22]
After O(nk®~1) preprocessing time, can

S

sample from DPP in 0 (k%) time.
A




Other applications

General strongly Rayleigh distributions:
U: ([Z]) — Ry is strongly Rayleigh if f, # 0 when Im(z;) = 0

fulrs, o z)i= 508 | |
i€S
Results apply for general strongly Rayleigh distributions, including random
spanning tree and DPPs are strongly Rayleigh
#:{0,13" = Ry fi: R = Ry




Overview

1. Motivation
 Random spanning trees
* Determinantal point processes



[sotropic transformation

Intuition: make all edges/elements having the same marginal

Npe
k

Let p, = Pr,|e € T]. Replace edge e with t, = [—=] parallel edges €

> — DX




[sotropic transformation

Intuition: make all edges/elements having the same marginal

Let p, = Pr,|e € T]. Replace edge e with t, = [nlzze] parallel edges e’

([n] (U
'u(k>_)]R20:'u(k>_)RZO

k
|U|

1. Nearisotropy: fore’ € U, Pr,[e' € T] < O(

2. Linear ground set size: |U| < 2n
3. Preserve strongly Rayleigh property



Up-down walk

Repeat for sufficiently many times. Take tree T
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in

T + e
S i

T
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Up-down walk

Repeat for sufficiently many times. Take tree T
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in
T+e

Up-down walk = down-up walk on the complement u: (n[’f]k) - R5q
defined by i([n] \ S) = u(S)



Up-down walk

Repeat for sufficiently many times. Take tree T
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in
T+e. UpdateT «T+e—f

Key points:

* Can implement 1 and 2 in O(log |V|)-time using link-cut tree
« Without isotropy, need 8 (|E|log|E|) time to converge

« With isotropy, converge in O(|V|log|V|) time



Overview

1. Motivation
 Random spanning trees
* Determinantal point processes

* Improved entropic independence under uniform marginals



Entropic independence

D;._1(S): sample i € S uniformly

WUis i-entropic independence <~ Vv:
Dir (V) = akDy, (VD1 || tDy-1)



Entropic independence

D;._1(S): sample i € S uniformly

.1 .
U is —entropic independence < Vv:

a
Dir (V) = akDy, (VD1 || tDy-1)
Strongly Rayleigh = 1-entropic independence
D (Vllw) = kDy, (vDyoq | |14Dg51)



Improved entropic independence under
uniform marginals

U: ([Z]) — R, strongly Rayleigh. When p, < O (S) Ve € [n]

Dir(V|l) = (n — k) log(n/k) Dy, (VD(n—k)—>1”liD(n—k)—>1)



Improved entropic independence under
uniform marginals

U: ([Z]) — R, strongly Rayleigh. When p, < O (S) Ve € [n]

N n _ _
Di,(V|l) = (n — k) log (E) Dy (VD(n—k)—>1”#D(n—k)—>1)

1. Dk, (V[[@) = Dy, (v|pw) = kDgp,(vDy1||tDy—1)



Improved entropic independence under
uniform marginals

k

u: ([Z]) — R, strongly Rayleigh. When p, < O (n) Ve € [n]

N n _ _
Di,(V|l) = (n — k) log (E) Dy (VD(n—k)—>1”#D(n—k)—>1)

1. Dk, (V|[@) = Dy, (v|p) = kDgp,(vDyny || Dy 1)
2. KDy, (VDgo [14Dyes) = (n = k) 10g () Doy, (WD -1 1| AD (1) 1)

Here we use the uniform marginal assumption.



Local to global argument

Entropy contraction of D, _xy-4 for i and its conditionals
= Entropy contraction of D,y (n—k-1)

= Mixing time of up-down walk.
Conditional of g at S: is(T \ S) = a(T|S) = a(T) forT 2 S
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Local to global argument

Entropy contraction of D, _xy-4 for i and its conditionals
= Entropy contraction of D,y (n—k-1)

= Mixing time of up-down walk.
(n — k) contraction = nlogn mixing time ®

(n — k) log(%) contraction = klog n mixing time ©
k



But, not all conditionals of i has improved entropy contraction ®
i.e. exists S s.t.
n

D, (Vs |ﬂ§) <(n-—k) log (E) D1 (175_'D(n—k)—>1 | ‘ﬁ§D(n—k)—>1)

A - 7
- —_ 17,55
D>




Average local to global

For each set W € ( ) and s, if for “many” S € (n S)

—k 1
fs has uniform marginal thus improved entropy contraction

then we still get klog n mixing time ©



Average local to global

For each set W € ( ) and s, if for “many” S € (n S)

—k 1
fs has uniform marginal thus improved entropy contraction
then we still get klog n mixing time ©

“many” = w/ prob. 1 — 1/n° over uniformly chosen S



Average local to global

For each set W € ( ) and s, if for “many” S € ( w )

n—k-—1 n—s
fs has uniform marginal thus improved entropy contraction

Proof:

Compare marginals of s and UsoisT for random s’

Since u is strongly Rayleigh, marginal doesn’t change much
Use martingale argument and Bernstein ineq.



Open problem

* Sublinear sampling alg. for uniform distribution over matroid
bases? (log-concave but not necessarily strongly Rayleigh)
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