Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence

Thuy-Duong Vuong

Joint with Nima Anari

Yang Liu

Sampling from a distribution

• Given access to density function $\mu: \Omega \to \mathbb{R}_{\geq 0}$, output x in Ω s.t. $\mathbb{P}[x] \propto \mu(x)$

E.g.: (sampling problems)

- random spanning tree [Aldous-Broder'90, Colbourn-Myrvold-Neufeld'96, Kelner-Madry'09, Madry-Straszak-Tarnawski'15, Schild'18, Anari-Liu-OveisGharan-Vinzant-V.—STOC'21]
- matroid bases [Anari-Liu-OveisGharan-Vinzant—STOC'19,Cryan-Guo-Mousa—FOCS'19]

Sampling from a distribution

- Given access to density function $\mu: \Omega \to \mathbb{R}_{\geq 0}$, output x in Ω s.t. $\mathbb{P}[x] \propto \mu(x)$
- Sufficient to approximately sample i.e. output x according to $\widehat{\mathbb{P}}$ s.t.

$$d_{TV}(\mathbb{P}, \widehat{\mathbb{P}}) = \sum |\widehat{\mathbb{P}}(x) - \mathbb{P}(x)| < 0.01$$

Overview

1. Motivation

- Random spanning trees
- Determinantal point processes

2. Algorithm

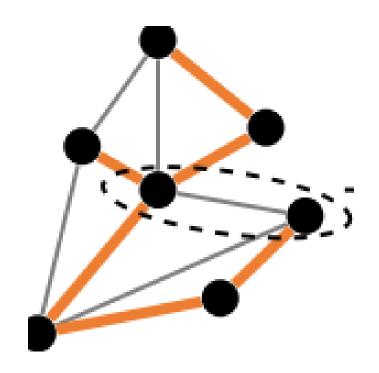
- Isotropic transformation
- Up-down walk

3. Analysis

- Improved entropic independence under uniform marginals
- Mixing time bound using average case local-to-global argument

Spanning tree

Given graph G = G(V,E), $T \subseteq E$ is a spanning tree of G if T has no loop and |T| = |V| - 1.



Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

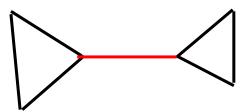
Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$ Application:

- Travelling salesman (Christofides algorithm, [Karlin-Klein-OveisGharan'21])
- Graph sparsification [Goyal-Rademacher-Vempala'09, Kyng-Song'18]

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

To find one spanning tree, need $\Omega(|E|)$ time.

 \Rightarrow need $\Omega(|E|)$ time to sample



Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

To find one spanning tree, need $\Omega(|E|)$ time.

 \Rightarrow need $\Omega(|E|)$ time to sample. This is tight!

[Schild'18] $O(|E|^{1+\epsilon})$ for any $\epsilon > 0$.

[Anari-Liu-OveisGharan-Vinzant-Vuong'21] $O(|E|\log^2|E|)$ Simpler algorithm + analysis

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

To find one spanning tree, need $\Omega(|E|)$ time.

 \Rightarrow need $\Omega(|E|)$ time to sample. This is tight!

[Schild'18] $O(|E|^{1+\epsilon})$ for any $\epsilon > 0$.

[Anari-Liu-OveisGharan-Vinzant-Vuong'21] $O(|E|\log^2|E|)$ Simpler algorithm + analysis Can we do better than linear time?

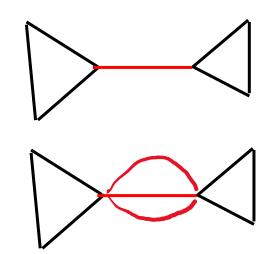
Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

Can we produce sample in sublinear time after preprocessing?

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$ Can we produce sample in sublinear time after preprocessing? YES!

Idea:

- 1. Make all edges equal (having the same marginal under the uniform spanning tree distributions) via subdividing edges
- Apply sampling algorithm from
 [Anari-Liu-OveisGharan-Vinzant-Vuong'21] (up-down walk)



Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

Can we produce sample in sublinear time after preprocessing? YES!

[Anari-Liu-Vuong--FOCS'22]

After $\tilde{O}(|E|)$ preprocessing time, can sample a random spanning tree in $\tilde{O}(|V|)$ time.

Other applications

Determinantal point processes (DPP):

(PSD) matrix $L \in \mathbb{R}^{n \times n}$: $\mu_L(S) = \det(L_{S,S})$ for |S| = k

Applications: random linear algebra, machine learning (recommender system)

```
\begin{pmatrix}
1 & 1 & 0 \\
5 & 2 & 4 \\
4 & 8 & 9 & 5 & 3 & 3 \\
9 & 2 & 3 & 3 \\
3 & 7 & 9 & 5 & 3 & 3 \\
4 & 8 & 6 & 1 & 3 & 0
\end{pmatrix}
```

Other applications

Determinantal point processes (DPP):

(PSD) matrix
$$L \in \mathbb{R}^{n \times n}$$
: $\mu_L(S) = \det(L_{S,S})$ for $|S| = k$

Applications: random linear algebra, machine learning (recommender system)

```
\begin{pmatrix}
1 & 1 & 0 \\
5 & 2 & 4 \\
4 & 8 & 9 & 5 & 3 & 3 \\
9 & 2 & 3 & 3 \\
3 & 7 & 9 & 5 & 3 & 3 \\
4 & 8 & 6 & 1 & 3 & 0
\end{pmatrix}
```

[Anari-Liu-Vuong--FOCS'22]

After $\tilde{O}(nk^{\omega-1})$ preprocessing time, can sample from DPP in $\tilde{O}(k^{\omega})$ time.

Other applications

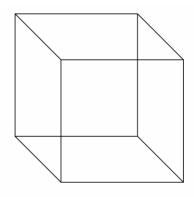
General strongly Rayleigh distributions:

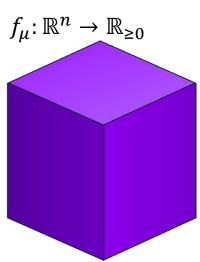
 $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ is strongly Rayleigh if $f_{\mu} \neq 0$ when $Im(z_i) \geq 0$

$$f_{\mu}(z_1,\ldots,z_n) := \sum \mu(S) \prod_{i \in S} z_i$$

Results apply for general strongly Rayleigh distributions, including random spanning tree and DPPs are strongly Rayleigh

$$\mu$$
: $\{0,1\}^n \to \mathbb{R}_{\geq 0}$





Overview

- 1. Motivation
 - Random spanning trees
 - Determinantal point processes
- 2. Algorithm
 - Isotropic transformation
 - Up-down walk
- 3. Analysis

Isotropic transformation

Intuition: make all edges/elements having the same marginal Let $p_e = Pr_{\mu}[e \in T]$. Replace edge e with $t_e = \lceil \frac{np_e}{k} \rceil$ parallel edges e'.

Isotropic transformation

Intuition: make all edges/elements having the same marginal

Let $p_e = Pr_{\mu}[e \in T]$. Replace edge e with $t_e = \lceil \frac{np_e}{k} \rceil$ parallel edges e'.

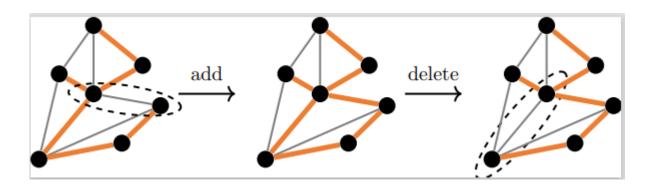
$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0} \Rightarrow \mu': \binom{U}{k} \to \mathbb{R}_{\geq 0}$$

- 1. Near isotropy: for $e' \in U$, $Pr_{\mu'}[e' \in T] \leq O(\frac{k}{|U|})$
- 2. Linear ground set size: $|U| \leq 2n$
- 3. Preserve strongly Rayleigh property

Up-down walk

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T+e



Up-down walk

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T+e

Up-down walk \equiv down-up walk on the complement $\bar{\mu}$: $\binom{[n]}{n-k} \to \mathbb{R}_{\geq 0}$ defined by $\bar{\mu}([n] \setminus S) = \mu(S)$

Up-down walk

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T + e. Update $T \leftarrow T + e f$

Key points:

- Can implement 1 and 2 in $O(\log |V|)$ -time using link-cut tree
- Without isotropy, need $\theta(|E|\log|E|)$ time to converge
- With isotropy, converge in $O(|V| \log |V|)$ time

Overview

1. Motivation

- Random spanning trees
- Determinantal point processes

2. Algorithm

- Isotropic transformation
- Up-down walk

3. Analysis

- Improved entropic independence under uniform marginals
- Mixing time bound using average case local-to-global argument

Entropic independence

```
D_{k \to 1}(S): sample i \in S uniformly \mu is \frac{1}{\alpha}-entropic independence \Leftrightarrow \forall \nu: \mathcal{D}_{KL}(\nu||\mu) \geq \alpha k \mathcal{D}_{KL}(\nu D_{k \to 1}||\mu D_{k \to 1})
```

Entropic independence

```
D_{k \to 1}(S): sample i \in S uniformly \mu is \frac{1}{\alpha}-entropic independence \Leftrightarrow \forall \nu: \mathcal{D}_{KL}(\nu||\mu) \geq \alpha k \mathcal{D}_{KL}(\nu D_{k \to 1}||\mu D_{k \to 1}) Strongly Rayleigh \Rightarrow 1-entropic independence \mathcal{D}_{KL}(\nu||\mu) \geq k \mathcal{D}_{KL}(\nu D_{k \to 1}||\mu D_{k \to 1})
```

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$
 strongly Rayleigh. When $p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k)\log(n/k)\,\mathcal{D}_{KL}(\nu D_{(n-k)\to 1}||\mu D_{(n-k)\to 1})$$

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0} \text{ strongly Rayleigh. When } p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k) \log\left(\frac{n}{k}\right) \mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

$$1. \mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) = \mathcal{D}_{KL}(\nu||\mu) \geq k\mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1})$$

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$
 strongly Rayleigh. When $p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k) \log\left(\frac{n}{k}\right) \mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

1.
$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) = \mathcal{D}_{KL}(\nu||\mu) \ge k\mathcal{D}_{KL}(\nu D_k \underline{\eta}_1||\mu D_{k\to 1})$$

2.
$$k\mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1}) \ge (n-k)\log\left(\frac{n}{k}\right)\mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

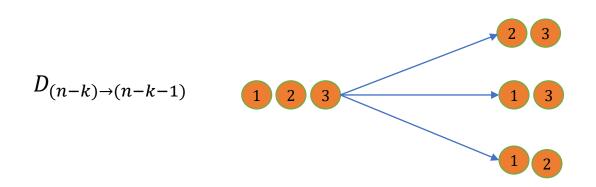
Here we use the uniform marginal assumption.

Local to global argument

Entropy contraction of $D_{(n-k)\to 1}$ for $\bar{\mu}$ and its conditionals

- \Rightarrow Entropy contraction of $D_{(n-k)\to(n-k-1)}$
- \Rightarrow Mixing time of up-down walk.

Conditional of $\bar{\mu}$ at \bar{S} : $\bar{\mu}_{\bar{S}}(\bar{T} \setminus \bar{S}) = \bar{\mu}(\bar{T}|\bar{S}) = \bar{\mu}(\bar{T})$ for $\bar{T} \supseteq \bar{S}$



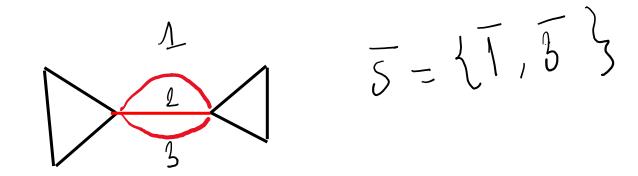
Local to global argument

Entropy contraction of $D_{(n-k)\to 1}$ for $\bar{\mu}$ and its conditionals

- \Rightarrow Entropy contraction of $D_{(n-k)\to(n-k-1)}$
- \Rightarrow Mixing time of up-down walk.
 - (n-k) contraction $\Rightarrow n \log n$ mixing time \otimes
 - $(n-k)\log(\frac{n}{k})$ contraction \Rightarrow k log n mixing time \odot

But, not all conditionals of $\bar{\mu}$ has improved entropy contraction \odot i.e. exists \bar{S} s.t.

$$\mathcal{D}_{KL}(\bar{\nu}_{\bar{S}}||\bar{\mu}_{\bar{S}}) < (n-k) \log \left(\frac{n}{k}\right) \mathcal{D}_{KL}(\bar{\nu}_{\bar{S}}D_{(n-k)\to 1}||\bar{\mu}_{\bar{S}}D_{(n-k)\to 1})$$



Average local to global

For each set $\overline{W} \in \binom{[n]}{n-k-1}$ and s, if for "many" $\overline{S} \in \binom{W}{n-s}$ $\overline{\mu}_{\overline{S}}$ has uniform marginal thus improved entropy contraction then we still get $k \log n$ mixing time \odot

Average local to global

For each set $\overline{W} \in \binom{[n]}{n-k-1}$ and s, if for "many" $\overline{S} \in \binom{W}{n-s}$ $\overline{\mu}_{\overline{S}}$ has uniform marginal thus improved entropy contraction then we still get $k \log n$ mixing time \odot "many" = w/ prob. $1 - 1/n^{10}$ over uniformly chosen \overline{S}

Average local to global

For each set $\overline{W} \in {[n] \choose n-k-1}$ and s, if for "many" $\overline{S} \in {\overline{W} \choose n-s}$

 $\bar{\mu}_{\bar{S}}$ has uniform marginal thus improved entropy contraction Proof:

Compare marginals of $\bar{\mu}_{\bar{S}}$ and $\bar{\mu}_{\overline{S} \cup \{s'\}}$ for random s'

Since μ is strongly Rayleigh, marginal doesn't change much Use martingale argument and Bernstein ineq.

Open problem

 Sublinear sampling alg. for uniform distribution over matroid bases? (log-concave but not necessarily strongly Rayleigh)