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Learning to sample, a central task in GenAI

𝑦1, ⋯ , 𝑦𝑛 ∼ 𝜋 𝒜 𝑟; 𝑦𝑖 → 𝑦′
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Learning to sample, a central task in GenAI

𝑦1, ⋯ , 𝑦𝑛 ∼ 𝜋
Impossible for 

atypical 𝑦1, ⋯ , 𝑦𝑛!

ො𝜋 ≡ ො𝜋 𝑦𝑖 𝑖=1
𝑛

= 𝐷𝑖𝑠𝑡(𝒜 𝑟; 𝑦𝑖 )| 𝑦𝑖
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𝑛 , 𝜋 ≤ 𝜖
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Learning to sample, a central task in GenAI

𝑦1, ⋯ , 𝑦𝑛 ∼ 𝜋
W. prob ≥ 1 − 𝛿 over 

𝑦𝑖 𝑖=1
𝑛 ∼ 𝜋 

𝒜 𝑟; 𝑦𝑖 → 𝑦′

𝑑𝑇𝑉 ො𝜋 𝑦𝑖 𝑖=1
𝑛 , 𝜋 ≤ 𝜖

ො𝜋 ≡ ො𝜋 𝑦𝑖 𝑖=1
𝑛

= 𝐷𝑖𝑠𝑡(𝒜 𝑟; 𝑦𝑖 )| 𝑦𝑖



Learning to sample • Input:   Training samples 𝑦1, ⋯ , 𝑦𝑛 ∼ 𝜋 i.i.d.

• Output: Algorithm 𝒜 that generates many 
new samples

• Guarantee: 

Let ො𝜋𝑌 = 𝐷𝑖𝑠𝑡 𝒜 𝑢, 𝑦𝑖 𝑖=1
𝑛 𝑌 = {𝑦1, … , 𝑦𝑛}

With probability ≥ 1 − 𝛿 over 𝑦1, ⋯ , 𝑦𝑛 ∼ 𝜋, 

𝑑𝑇𝑉( ො𝜋𝑌, 𝜇) ≤ 𝜖

• How to construct 𝒜? 

• Use random walk



Algorithm



Random walk

Iteratively move between states 
according to probabilistic rule:

𝑋0 → 𝑋1 → 𝑋2  …
 



Random choices induces sequence of 
distributions

Iteratively move between states 
according to probabilistic rule:

X0 → X1 → X2 →  … → XT



Issues: Sampling algorithm:

• Choose transition rule s.t. 

X0 → X1 → X2 →  … → Xt → ⋯ → 𝜋 
     and each step is easy to implement

• Start at arbitrary 𝑋0, do T steps of 
random walk and output 𝑋𝑇

• Hope: 𝑑𝑇𝑉(𝑋𝑇 , 𝜋) ≤ 𝜖 and 𝑇 not too 
large

• Transition probability 
depends on 𝜇(𝑥)



Issues: Sampling algorithm:

• Choose transition rule s.t. 

X0 → X1 → X2 →  … → Xt → ⋯ → 𝜋 
     and each step is easy (e.g. local)

• Start at arbitrary 𝑋0, do T steps of 
random walk and output 𝑋𝑇

• Hope: 𝑑𝑇𝑉(𝑋𝑇 , 𝜋) ≤ 𝜖 and 𝑇 not too 
large

• Transition probability 
depends on 𝜇(𝑥)

Local walk ≡ locations at step t 
and t+1 are close

Non-local

Local



Issues: Sampling algorithm:

• Choose transition rule s.t. 𝑋𝑡 → 𝜋 
and each step is easy (e.g. local)

• Start at arbitrary 𝑋0, do T steps of 
random walk and output 𝑋𝑇

• Hope: 𝑑𝑇𝑉(𝑋𝑇 , 𝜋) ≤ 𝜖 and 𝑇 not too 
large

• Don’t directly have access to 
transition probability in our 
setting

• For some 𝜋, 𝑇 can be very 
large



• Don’t directly have access to 
transition probability

• For some RW, can estimate 
transition probabilities from 
training data

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

Issues: Fix:



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

• For some RW, can estimate 
transition probabilities from 
training data

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

Issues: Fix:

• Multimodality due to non-homogeneity 
Example: human height distribution 

• Multimodality → slow convergece.



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

Issues:
• For some RW, can estimate 

transition probabilities from 
training data

Fix:

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

• Local walk avoid moving into low-probability 
regions

• Avoid the valley/bottleneck between peaks

• Cannot cross from one peak to another



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

Issues:
• For some RW, can estimate 

transition probabilities from 
training data

Fix:

1. Local walk: fails

2. Annealing: fails 
[GLR’18]

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

𝜋

𝜋0.5

𝜋0.1

Annealing:

• Removes multimodality by flattening 𝜋

• Slow mixing for simple bimodal 𝜇 [GLR18]



• Don’t directly have access to 
transition probability

• For multimodal 𝜇, convergence 
time T is large

• For some RW, can estimate 
transition probabilities from 
training data

Fix:

1. Local walk: fails

2. Annealing: fails

3. Denoising diffusion

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

𝜇

𝑃𝑢𝑟𝑒
𝑛𝑜𝑖𝑠𝑒

𝜇 +noise

Issues:

Denoising diffusion (DDPM):

• For continuous distr

• Transition prob. of discrete analog is 
hard to learn



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

• For some RW, can estimate 
transition probabilities from 
training data

Fix:

1. Local walk: slow

2. Annealing: slow

3. Denoising diffusion: 
fast convergence but 
transition probabilities 
is hard to learn

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

𝜋

𝑃𝑢𝑟𝑒
𝑛𝑜𝑖𝑠𝑒

𝜋 +noise

Issues:



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

Issues:
• For some RW, can estimate 

transition probabilities from 
training data

Fix:

• Local walk cannot 
move between peaks 

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

Issues:
• For some RW, can estimate 

transition probabilities from 
training data

Fix:

• Local walk cannot 
move between peaks 

• What if we start local 
walks from all peaks?

• Average distr. over 
workers converge to 
𝜇 very fast

Goal: run random walk s.t. 𝑋𝑡 → 𝜇
       & each step is easy (e.g. local)

• Start local walk from training 
samples

• Expect to mix fast if #samples is 
large enough to cover the peaks



• Don’t directly have access to 
transition probability

• For multimodal 𝜋, convergence 
time T is large

Issues:
• For local walk, can provably 

estimate transition 
probabilities from training data

Algorithm:

• Local walk cannot 
move between peaks 

• What if we start local 
walks from all peaks?

• Average distr. over 
workers converge to 
𝜇 very fast

Our framework

• Prove that local walk from 
empirical distribution over training 
samples converge to 𝜋 fast if 
#samples is large enough to cover 
the peaks



Application



Continuous distribution 
𝑠𝑢𝑝𝑝 𝜋 = ℝ𝑑

Gaussian mixture

Discrete distribution 
𝑠𝑢𝑝𝑝 𝜋 = {−1, +1}𝑑

Graphical (Ising) model



If 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 , 𝜋𝑖: ℝ𝑑 → ℝ≥0 is 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑖 , Σ𝑖

 

Application 1: mixture of Gaussians

All smooth continuous distribution 𝜋 ≈ a mixture of Gaussians

𝜋1= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚1, Σ1 𝜋2 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚2, Σ2
𝜋 =

1

2
𝜋1 +

1

2
𝜋2



If 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 , 𝜋𝑖: ℝ𝑑 → ℝ≥0 is 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑖 , Σ𝑖

 

Application 1: mixture of Gaussians

All smooth continuous distribution 𝜋 ≈ a mixture of Gaussians
𝑘 = measuring complexity of 𝜋



If 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 , 𝜋𝑖: ℝ𝑑 → ℝ≥0 is 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑖 , Σ𝑖

 

Application 1: mixture of Gaussians

Long-studied testbed for learning & sampling algorithm.
• 𝑘 = 1: [BE’85,Vil’03,VW’19,CELSZ’21] 

• 𝑘 > 1:
• Parameter learning: [Pearson’94,Das’99,SK’01,VW’04,MV’10,HK’13,DS’20,GHK’15]

• Sampling: 
❖ [GLR’18a,b]: Only for isotropic Gaussians, Σ𝑖 = Σ∀𝑖
❖ [KV23]: For general mixture but has bad runtime dependency on 𝑘 



If 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 , 𝜋𝑖: ℝ𝑑 → ℝ≥0 is 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑖 , Σ𝑖 , 𝛼𝐼 ≼ Σ𝑖 ≼ 𝛽𝐼 then:

 

Application 1: mixture of Gaussians

𝜇𝑡 ≡ continuous Langevin initialized at 𝑦1, … , 𝑦𝑛 ∼ 𝜋 i.i.d.
w/ transition probabilities (score function) learned from samples 

[Gatmiry-Kelner-Lee’24,Chen-Kontonis-Shah’24]

Continuous Langevin ≡ Noisy gradient ascent
𝑑𝑋𝑡 = ∇log 𝜋(Xt) + 𝑑𝐵𝑡

score 
function

Brownian 
motion
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𝑘 𝑝𝑖𝜋𝑖 , 𝜋𝑖: ℝ𝑑 → ℝ≥0 is 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑖 , Σ𝑖 , 𝛼𝐼 ≼ Σ𝑖 ≼ 𝛽𝐼 then:

 

Application 1: mixture of Gaussians

𝜇𝑡 ≡ continuous Langevin initialized at 𝑦1, … , 𝑦𝑛 ∼ 𝜋 i.i.d.
w/ transition probabilities (score function) learned from samples 

[Gatmiry-Kelner-Lee’24,Chen-Kontonis-Shah’24]

Let 𝑛 = Ω
𝑘

𝜖𝑇𝑉
2 log

𝑘

𝜌
, 𝑇 =

෨𝑂(1)

𝛼
 

With probability 1 − 𝜌, 𝑑𝑇𝑉(𝜇𝑇 , 𝜋) ≤ 𝜖𝑇𝑉
 

𝑑
𝑝𝑜𝑙𝑦(

𝑘

𝜖𝑇𝑉
)
 

samples



For 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 where 𝜋𝑖  satisfies log-Sobolev (Poincare resp.) inequality:

 
• Convergence time is optimal
• Matches convergence time of the case 𝑘 = 1 i.e. 𝜋 satisfies log-Sobolev 

(Poincare resp.) inequality
• Robust to perturbation/discretization/score error

Generalized to mixture of isoperimetric distributions



For 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 where 𝜋𝑖  satisfies log-Sobolev (Poincare resp.) inequality:

 
• Convergence time is optimal
• Matches convergence time of the case 𝑘 = 1 i.e. 𝜋 satisfies log-Sobolev 

(Poincare resp.) inequality
• Robust to perturbation/discretization/score error
• If 𝜋𝑖’s are Gaussians then can estimate transition probabilities of 

denoising diffusion (DDPM) using [GKL’24,CKS’24], but unclear for general 
isoperimetric 𝜋𝑖

Discussion



Ising model 𝜋: ±1 𝑛 → ℝ≥0, 𝜋 𝑥 ∝ exp(
1

2
𝑥, 𝐽𝑥 + ⟨ℎ, 𝑥⟩):

 

 

Application 2: low-complexity (low-rank) Ising

Motivation: 
• Simplest discrete distribution with non-trivial correlations
• Hopfield network [Lit74,Hop82,PF77]

• Stochastic block model [Sin11,DAM17,AMM+18]

• Bayesian inference in linear regression [DAM17, LM19, MV21,MW24] 

5 3

1
2

4

X1, ⋯ , Xn are random variables
• Jij encodes correlation of Xi, Xj

• hi encodes bias of Xi



Motivation: Bayesian inference in linear regression 
[DAM17, LM19, MV21,MW24] 

Given observation 𝑦0 = 𝑋Θ + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎2𝐼),
the Bayesian estimator for Θ with prior Uniform( ±1 n) is 

𝜋 𝜃 ∝ exp −
𝑦0−𝑋Θ

2

2𝜎2 = Ising with 𝐽 = 𝑋𝑇𝑋/𝜎2  and ℎ = 𝑦0
𝑇𝑋/2𝜎2

Note: 
• 𝐽 is PSD
• Rank(𝐽) = dim 𝑦0 ≪ n



Multimodality of Ising model

Projection of  Ising model with 𝐽 = 𝜆𝑢𝑢𝑇 , 𝑢 = 1 to 1-dimension

𝜆 < 1

𝜆 > 1



Ising model 𝜋: ±1 𝑛 → ℝ≥0, 𝜋 𝑥 ∝ exp(
1

2
𝑥, 𝐽𝑥 + ⟨ℎ, 𝑥⟩):

Eigenvalues of 𝐽: 𝜆1 ≥ ⋯ ≥ 𝜆𝑟 > 1 −
1

𝑐
≥ 𝜆𝑟+1 ≥ ⋯ ≥ 𝜆𝑛

s.t. sum (negative eigenvalues) ≤ 𝑂(1)

 

Application 2: low-complexity (low-rank) Ising

𝜇𝑡 ≡ Glauber initialized at 𝑦1, … , 𝑦𝑛 ∼ 𝜋 i.i.d. 
with transition probabilities learned from 𝑦1, … , 𝑦𝑛via pseudo-likelihood [Bes75]

 

≈Low-rank

Local walk—Glauber: 
each step resamples 1 location



Ising model 𝜋: ±1 𝑛 → ℝ≥0, 𝜋 𝑥 ∝ exp(
1

2
𝑥, 𝐽𝑥 + ⟨ℎ, 𝑥⟩):

Eigenvalues of 𝐽: 𝜆1 ≥ ⋯ ≥ 𝜆𝑟 > 1 −
1

𝑐
≥ 𝜆𝑟+1 ≥ ⋯ ≥ 𝜆𝑛

s.t. sum (negative eigenvalues) ≤ 𝑂(1)

 

Application 2: low-complexity (low-rank) Ising

𝜇𝑡 ≡ Glauber initialized at 𝑦1, … , 𝑦𝑛 ∼ 𝜋 i.i.d. 
with transition probabilities learned from 𝑦1, … , 𝑦𝑛via pseudo-likelihood

Let 𝑛 = Ω 𝑛𝑟𝜆1
𝑂 𝑟 log(

1

𝜌
)/𝜖𝑇𝑉

4 , 𝑇 = ෨𝑂 𝑛𝜆1

With probability 1 − 𝜌, 𝑑𝑇𝑉(𝜇𝑇 , 𝜋) ≤ 𝜖𝑇𝑉
 

≈Low-rank



Ising model 𝜋: ±1 𝑛 → ℝ≥0, 𝜋 𝑥 ∝ exp(
1

2
𝑥, 𝐽𝑥 + ⟨ℎ, 𝑥⟩):

Eigenvalues of 𝐽: 𝜆1 ≥ ⋯ ≥ 𝜆𝑟 > 1 −
1

𝑐
≥ 𝜆𝑟+1 ≥ ⋯ ≥ 𝜆𝑛

s.t. sum (negative eigenvalues) ≤ 𝑂(1)

 

Discussion

• If 𝑟 = 𝑂 1 , new efficient (distribution) learner
• Separation between parameter learning & distribution learning

≈Low-rank

Ω(exp(𝑛)) 
samples

𝑝𝑜𝑙𝑦(𝑛) 
samples



Proof



Challenge
• Most analysis techniques only handle 

convergence time from worst-case start



Challenge

• Most analysis techniques only handle 
convergence time from worst-case start

• Exceptions: 

• Glauber on symmetric Ising & 
related models [GS22; BGZ24; BMP21; Cuf+12; 

LLP10; DLP09a; DLP09b; GGS24]: exploit special 
properties in stat. physics setting 
(symmetricity, monotonicity)



Challenge

• Most analysis techniques only handle 
convergence time from worst-case start

• Exceptions: 

• Glauber on symmetric Ising & 
related model 

• Langevin on Gaussian mixtures [KV23]: 
bad dependency on 𝑘 =
 #components. 
Can only bound convergence time 

𝑇 ≤ 22𝑘
since:

❖ Proof looks at how component overlaps,

❖ Becomes very complicated as the overlaps 
structure has exponential dependency on k 



This work

• Tight bounds and 
exponentially 
improve on [KV23]

• Unifying proof for 
continuous and 
discrete distributions

• Reduce to higher 
eigenvalue gap

• Most analysis techniques only handle 
convergence time from worst-case start

• Previous Exceptions: 

• Glauber on symmetric Ising/Potts 
model: exploit special properties

•  Langevin on Gaussian mixtures 
[KV23]: Bad dependency on 
#components due to overlapping 
analysis

 



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯

 

Mixing time and 
eigenvalues of Markov transition matrix

Thm (classical): mixes in ≈
1

1−𝜆2
 steps from worst case start

 



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯

 

Fast mixing from empirical sample under 
higher−order eigenvalue gap

Thm (classical): mixes in ≈
1

1−𝜆2
 steps from worst case start

 
Thm (this work): mixes in ≈

1

1−𝜆𝑘
 steps when starts at a randomly 

chosen 𝑦𝑖 among 𝑛 ≈ 𝑘 samples 𝑦1, … , 𝑦𝑛 ∼ 𝜋

 



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯

 

Higher order eigenvalue gap of mixtures

Thm (this work): mixes in ≈
1

1−𝜆𝑘
 steps when starts at a randomly 

chosen 𝑦𝑖 among 𝑛 ≈ 𝑘 samples 𝑦1, … , 𝑦𝑛 ∼ 𝜋

 

Thm (this work): 𝜋 = σ𝑖=1
𝑘 𝑝𝑖𝜋𝑖 and 2nd-eig of Glauber/Langevin for 

𝜋𝑖 ≤ 1 − 𝜎 then k-th eig of Glauber/Langevin for 𝜋 ≤ 1 − 𝜎 

 
Application:
• Mixture of Gaussians/isoperimetric continuous distribution
• Low-rank Ising ≈ mixture of high-temperature Isings with second eigenvalue 

gap [KLR22,AKV24]



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ with eigenvectors 1 ≡ 𝑓1, 𝑓2, …
 

 

Thm (this work): mixes in ≈
1

1−𝜆𝑘
 steps when starts at a randomly 

chosen 𝑦𝑖 among 𝑛 ≈ 𝑘 samples 𝑦1, … , 𝑦𝑛 ∼ 𝜋

 

Lem:

𝜇0 ≡ initialization. If σ𝑖=1
𝑘 || 𝜇0, 𝑓𝑖 ||2 ≤ 𝜖2, t =

log
1

𝜖

1−𝜆𝑘

𝑑𝑇𝑉(𝜇𝑡 , 𝜋) ≤ 𝜖

 

Fast mixing from empirical sample under 
higher−order eigenvalue gap



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ with eigenvectors 1 ≡ 𝑓1, 𝑓2, …
 

 

Thm (this work): mixes in ≈
1

1−𝜆𝑘
 steps when starts at a randomly 

chosen 𝑦𝑖 among 𝑛 ≈ 𝑘 samples 𝑦1, … , 𝑦𝑛 ∼ 𝜋
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Fast mixing from empirical sample under 
higher−order eigenvalue gap



Transition probability matrix P: 𝑃 𝑥, 𝑦 = ℙ 𝑋𝑡+1 = 𝑦 𝑋𝑡 = 𝑥
Eigenvalues of 𝑃: 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ with eigenvectors 1 ≡ 𝑓1, 𝑓2, …
 

𝔼𝑦∼𝜋 𝛿𝑦 , 𝑓𝑖 = 𝜋, 𝑓𝑖 = 0

𝔼𝑦∼𝜋 𝛿𝑦 , 𝑓𝑖
2

= 𝑓𝑖 , 𝑓𝑖 = 1

We could use Chebyshev, but only get 𝑛 ≥
𝑘

𝜖2𝜌

New trick: restrict to 𝑦 with bounded | 𝛿𝑦 , 𝑓𝑖 | and 
use Bernstein+ triangle ineq. to deal with remaining 𝑦

 

Lem:𝜇0 ≡
1

𝑛
σ𝛿𝑦𝑖

. If 𝑛 ≥
𝑘

𝜖2 log
𝑘

𝜌
 then w. prob 1 − 𝜌,  σ𝑖=1

𝑘−1 || 𝜇0, 𝑓𝑖 ||2 ≤ 𝜖2

 

Fast mixing from empirical sample under 
higher−order eigenvalue gap





Trajectories of Langevin initialized at 
training samples 𝑥1, 𝑥2

Langevin with data-based initialization:
𝑋0 = 𝑥 ∼ Uniform training samples ; 

𝑋 𝑛+1 ℎ − 𝑋𝑛ℎ = ∇ log 𝜇 Xnh h + 𝒩 0,2ℎ
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