

Learning and sampling multimodal distributions with data-based initialization

Thuy-Duong “June” Vuong

UC Berkeley

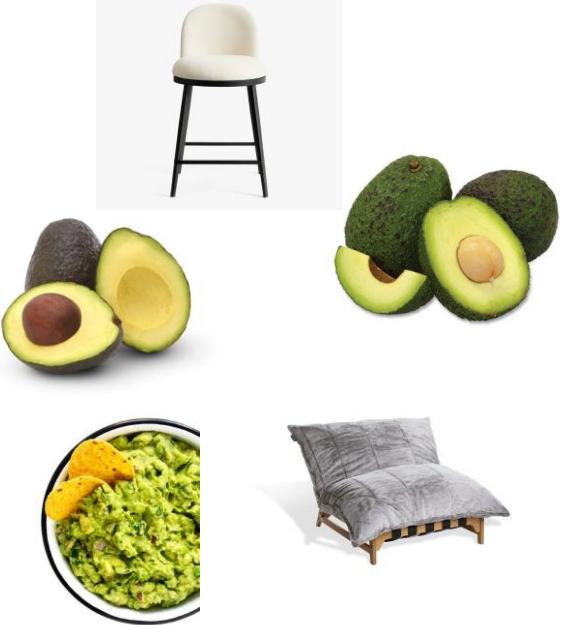
Joint work with Holden Lee and Frederic Koehler

Learning to sample,
a central task in
GenAI

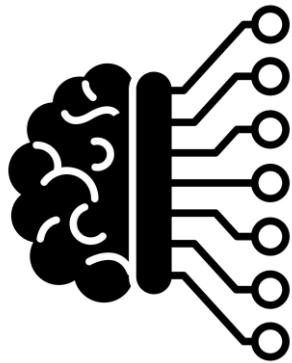
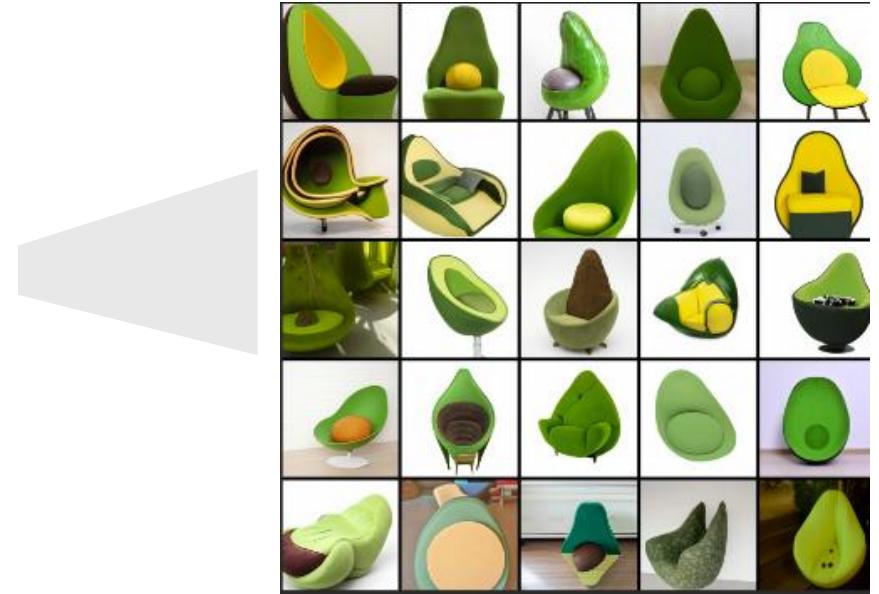
OPENAI
DALL-E 2

ChatGPT

Learning to sample, a central task in GenAI

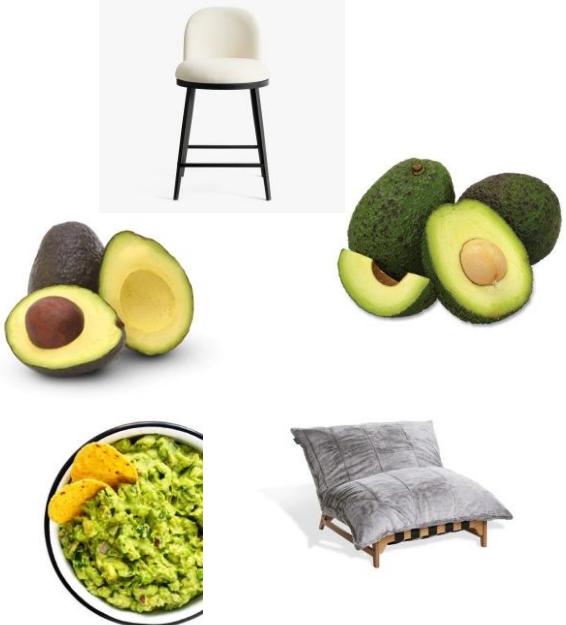


Training samples



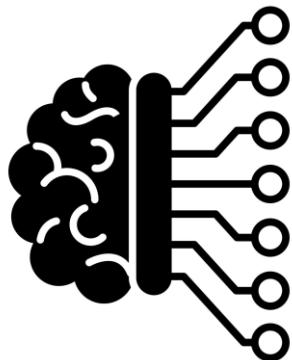
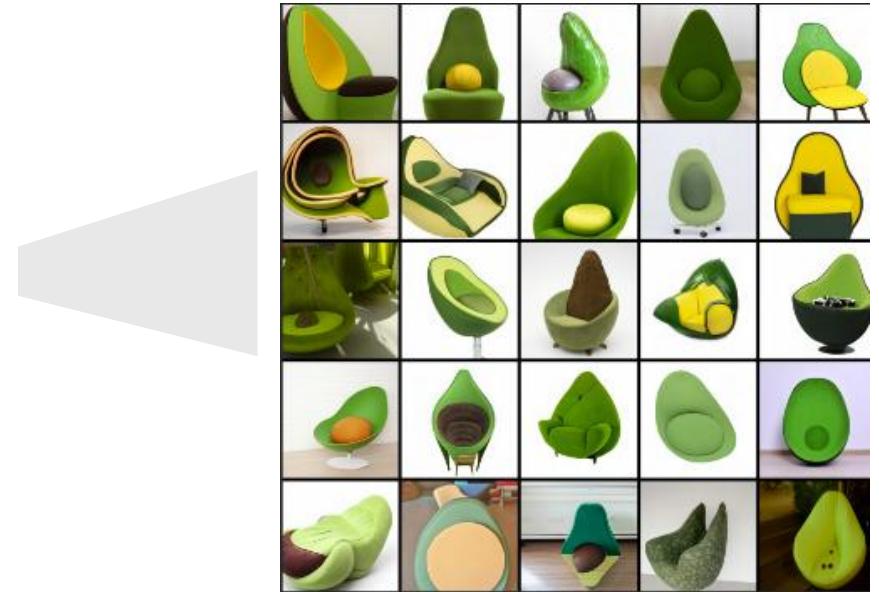
Generated samples

Learning to sample, a central task in GenAI



Training samples

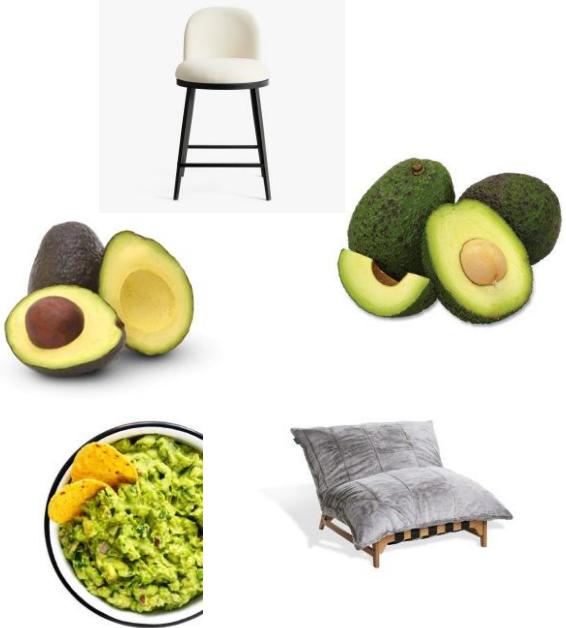
$$y_1, \dots, y_n \sim \pi$$



Generated samples

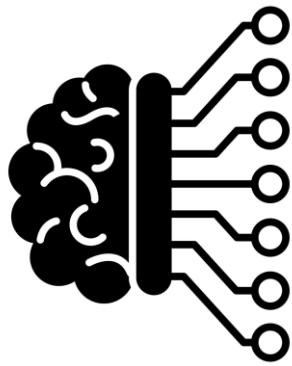
$$\mathcal{A}(\underbrace{r}_{\text{Random source}}; (y_i)) \rightarrow y'$$

Learning to sample, a central task in GenAI



Training samples

$$y_1, \dots, y_n \sim \pi$$

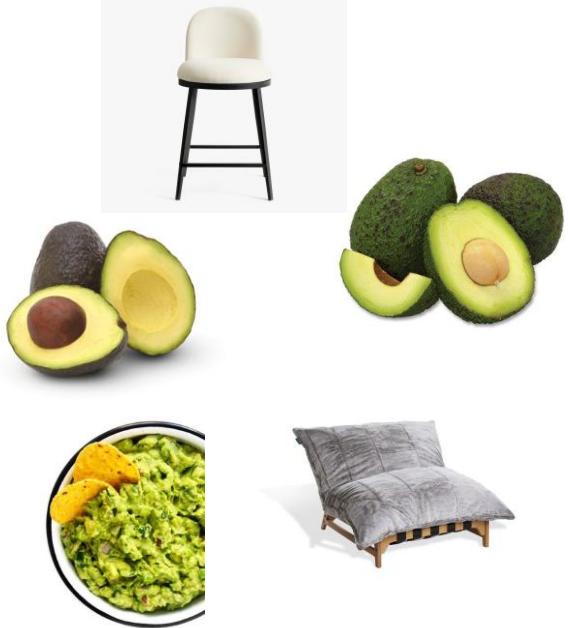


$$\hat{\pi} \equiv \hat{\pi}_{(y_i)_{i=1}^n} \\ = \text{Dist}(\mathcal{A}(r; (y_i)) | (y_i))$$

Generated samples

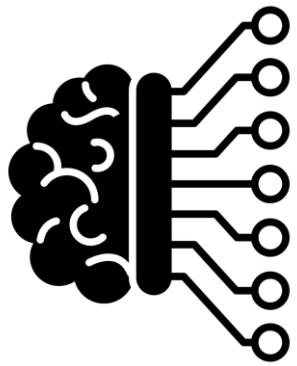
$$\mathcal{A}(r; (y_i)) \rightarrow y' \\ d_{TV} \left(\hat{\pi}_{(y_i)_{i=1}^n}, \pi \right) \leq \epsilon$$

Learning to sample, a central task in GenAI



Training samples

$$y_1, \dots, y_n \sim \pi$$



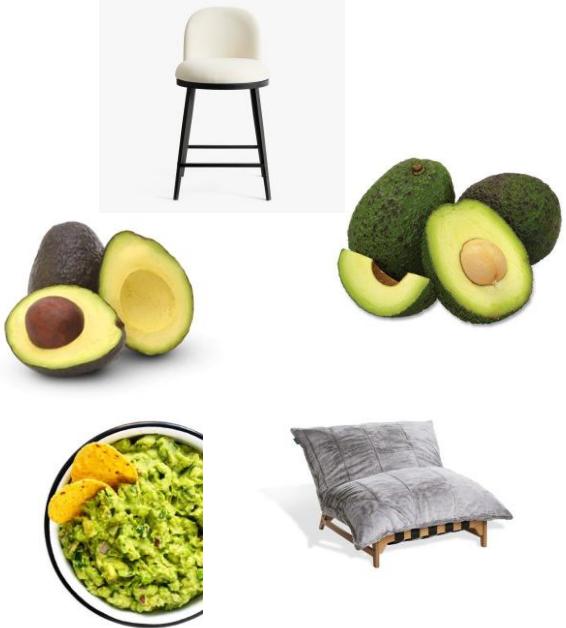
$$\hat{\pi} \equiv \hat{\pi}_{(y_i)_{i=1}^n} \\ = \text{Dist}(\mathcal{A}(r; (y_i)) | (y_i))$$

Impossible for
atypical y_1, \dots, y_n !

Generated samples

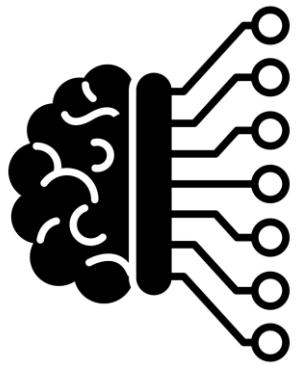
$$\mathcal{A}(r; (y_i)) \rightarrow y' \\ d_{TV} \left(\hat{\pi}_{(y_i)_{i=1}^n}, \pi \right) \leq \epsilon$$

Learning to sample, a central task in GenAI



Training samples

$$y_1, \dots, y_n \sim \pi$$



$$\begin{aligned}\hat{\pi} &\equiv \hat{\pi}_{(y_i)_{i=1}^n} \\ &= \text{Dist}(\mathcal{A}(r; (y_i)) | (y_i))\end{aligned}$$

W. prob $\geq 1 - \delta$ over
 $(y_i)_{i=1}^n \sim \pi$

Generated samples

$$\begin{aligned}\mathcal{A}(r; (y_i)) &\rightarrow y' \\ d_{TV} \left(\hat{\pi}_{(y_i)_{i=1}^n}, \pi \right) &\leq \epsilon\end{aligned}$$

Learning to sample

- How to construct \mathcal{A} ?
- Use **random walk**

- Input: Training samples $y_1, \dots, y_n \sim \pi$ i.i.d.
- Output: Algorithm \mathcal{A} that generates many new samples
- Guarantee:

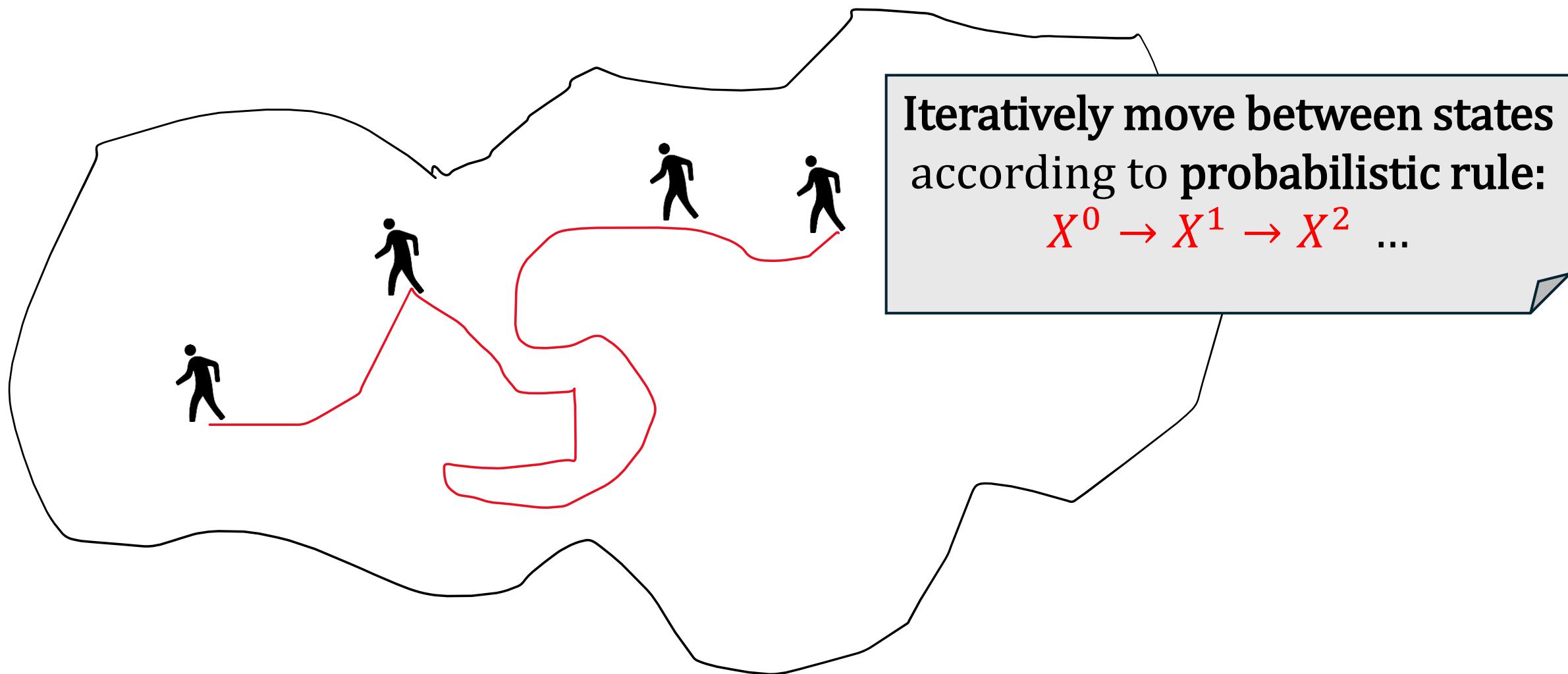
Let $\hat{\pi}_Y = \text{Dist}(\mathcal{A}(u, (y_i)_{i=1}^n) | Y = \{y_1, \dots, y_n\})$

With probability $\geq 1 - \delta$ over $y_1, \dots, y_n \sim \pi$,

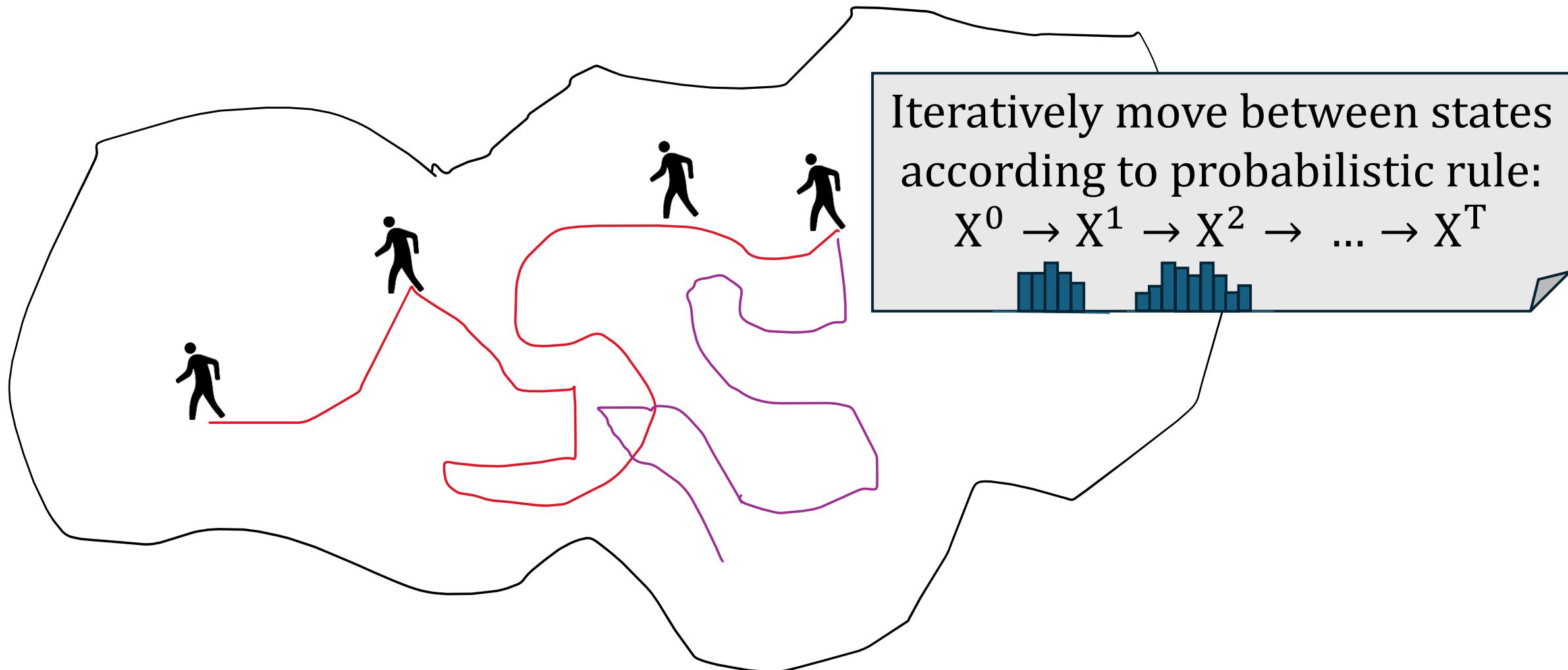
$$d_{TV}(\hat{\pi}_Y, \mu) \leq \epsilon$$

Algorithm

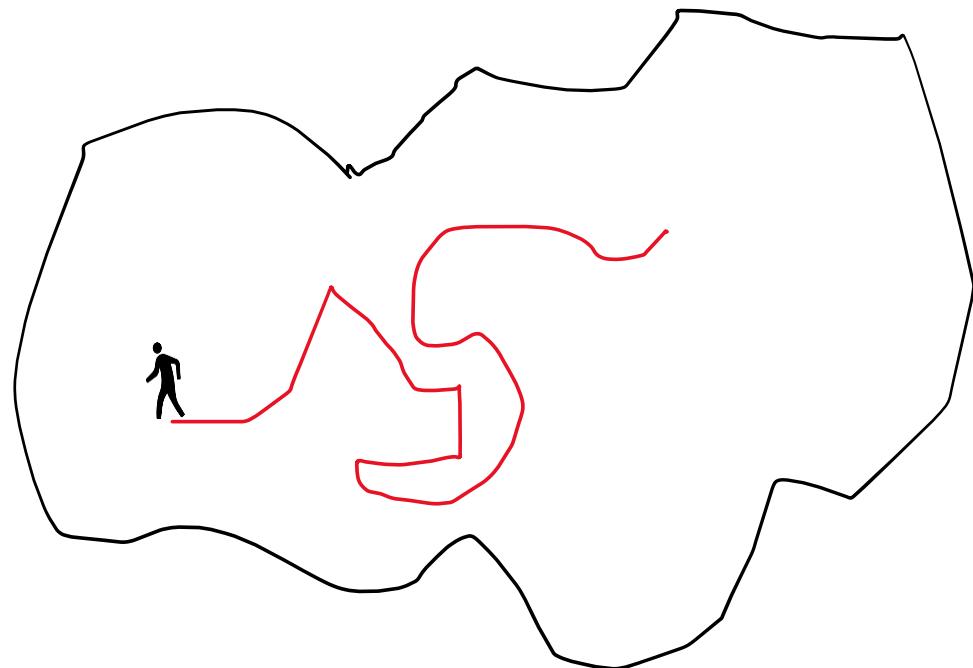
Random walk



Random choices induces sequence of distributions

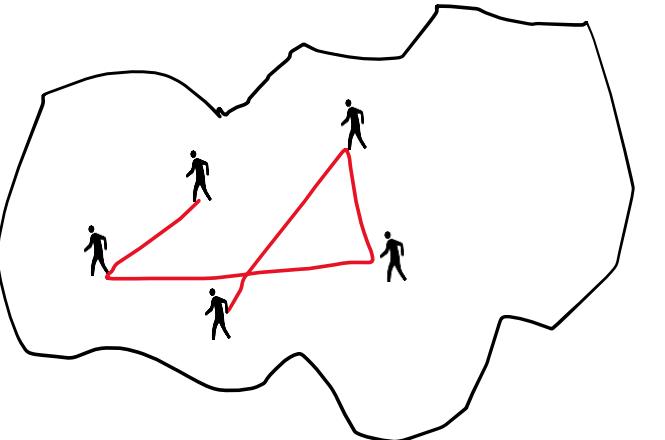


Sampling algorithm:

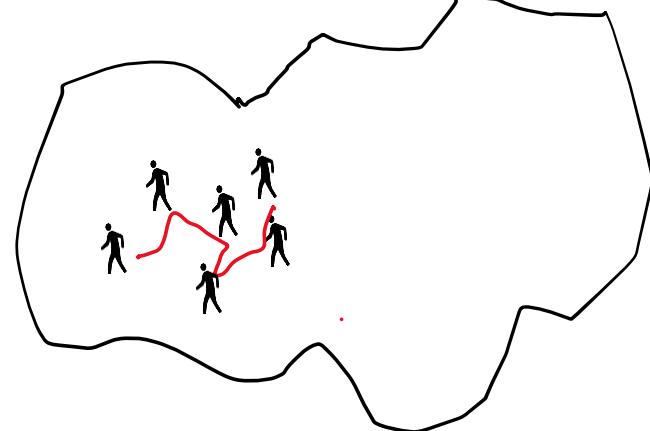


- Choose transition rule s.t.
 $X^0 \rightarrow X^1 \rightarrow X^2 \rightarrow \dots \rightarrow X^t \rightarrow \dots \rightarrow \pi$
and each step is easy to implement
- Start at arbitrary X^0 , do T steps of random walk and output X^T
- Hope: $d_{TV}(X^T, \pi) \leq \epsilon$ and T not too large

Non-local



Local



Local walk \equiv locations at step t and $t+1$ are close

Sampling algorithm:

- Choose transition rule s.t.
 $X^0 \rightarrow X^1 \rightarrow X^2 \rightarrow \dots \rightarrow X^t \rightarrow \dots \rightarrow \pi$
and each step is easy (e.g. **local**)
- Start at arbitrary X^0 , do T steps of random walk and output X^T
- Hope: $d_{TV}(X^T, \pi) \leq \epsilon$ and T not too large

Issues:

- Don't directly have access to transition probability in our setting
- For some π , T can be very large

Sampling algorithm:

- Choose transition rule s.t. $X_t \rightarrow \pi$ and each step is easy (e.g. local)
- Start at arbitrary X^0 , do T steps of random walk and output X^T
- Hope: $d_{TV}(X^T, \pi) \leq \epsilon$ and T not too large

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability

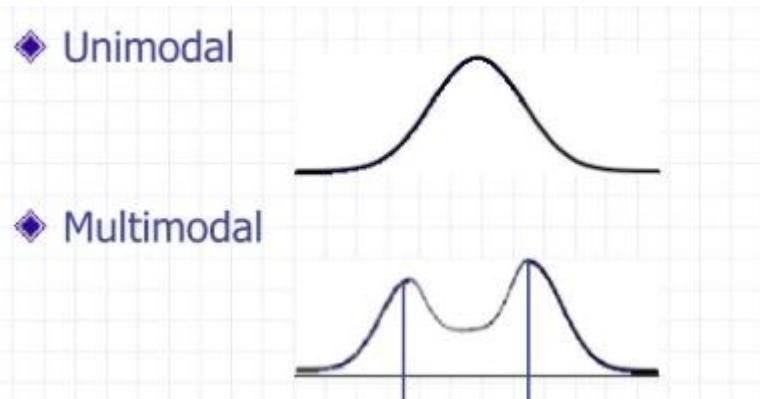
Fix:

- For some RW, can estimate transition probabilities from training data

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



Fix:

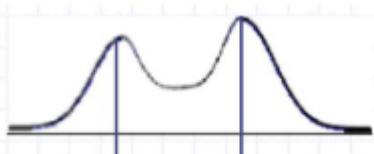
- For some RW, can estimate transition probabilities from training data

- Multimodality due to non-homogeneity
Example: human height distribution
- Multimodality \rightarrow slow convergence.

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



Fix:

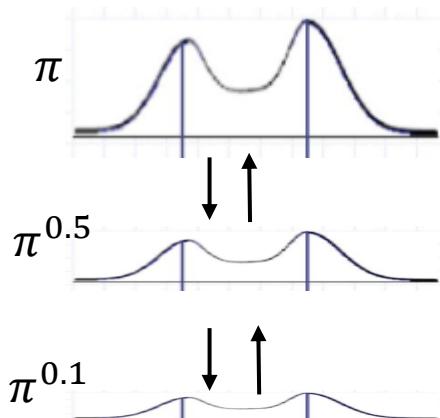
- For some RW, can estimate transition probabilities from training data

- Local walk avoid moving into low-probability regions
- Avoid the valley/bottleneck between peaks
- Cannot cross from one peak to another

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



1. Local walk: fails
2. Annealing: fails [GLR'18]

Fix:

- For some RW, can estimate transition probabilities from training data

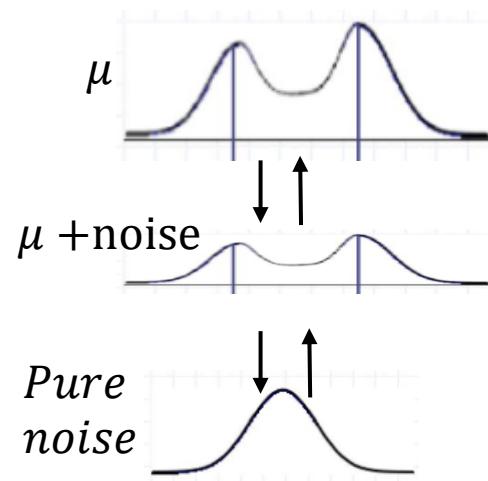
Annealing:

- Removes multimodality by flattening π
- Slow mixing for simple bimodal μ [GLR18]

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** μ , convergence time T is large



1. Local walk: fails
2. Annealing: fails
3. Denoising diffusion

Fix:

- For some RW, can estimate transition probabilities from training data

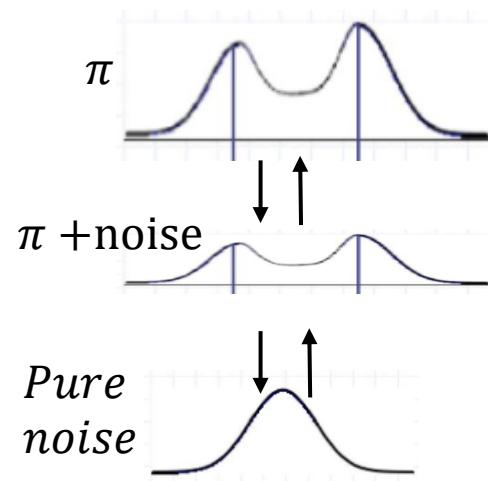
Denoising diffusion (DDPM):

- For continuous distr
- Transition prob. of discrete analog is hard to learn

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



1. Local walk: slow
2. Annealing: slow
3. Denoising diffusion: fast convergence but transition probabilities is hard to learn

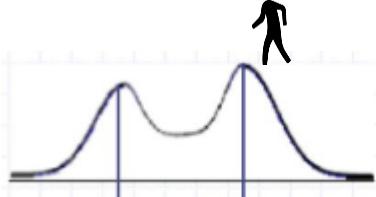
Fix:

- For some RW, can estimate transition probabilities from training data

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



- Local walk cannot move between peaks

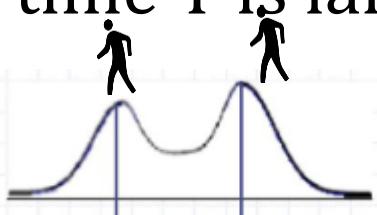
Fix:

- For some RW, can estimate transition probabilities from training data

Goal: run random walk s.t. $X_t \rightarrow \mu$
& each step is easy (e.g. local)

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



- Local walk cannot move between peaks
- What if we start local walks from all peaks?
- Average distr. over workers converge to μ very fast

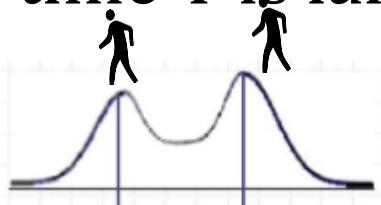
Fix:

- For some RW, can estimate transition probabilities from training data
- Start local walk from training samples
- Expect to mix fast if #samples is large enough to cover the peaks

Our framework

Issues:

- Don't directly have access to transition probability
- For **multimodal** π , convergence time T is large



- Local walk cannot move between peaks
- What if we start local walks from all peaks?
- Average distr. over workers converge to μ very fast

Algorithm:

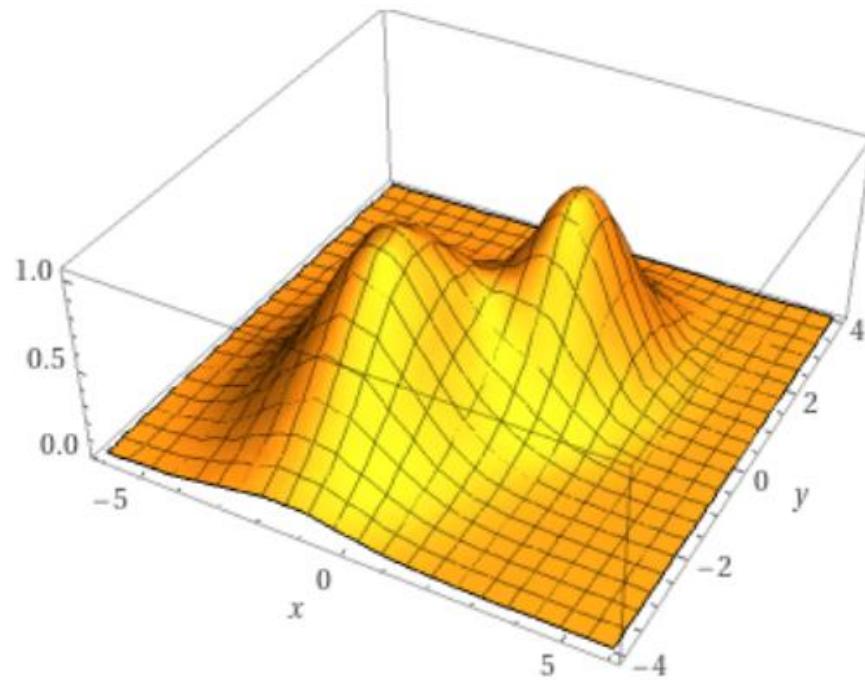
- For local walk, can **provably** estimate transition probabilities from training data
- Prove that local walk from empirical distribution over training samples converge to π fast if #samples is large enough to cover the peaks

Application

Continuous distribution

$$supp(\pi) = \mathbb{R}^d$$

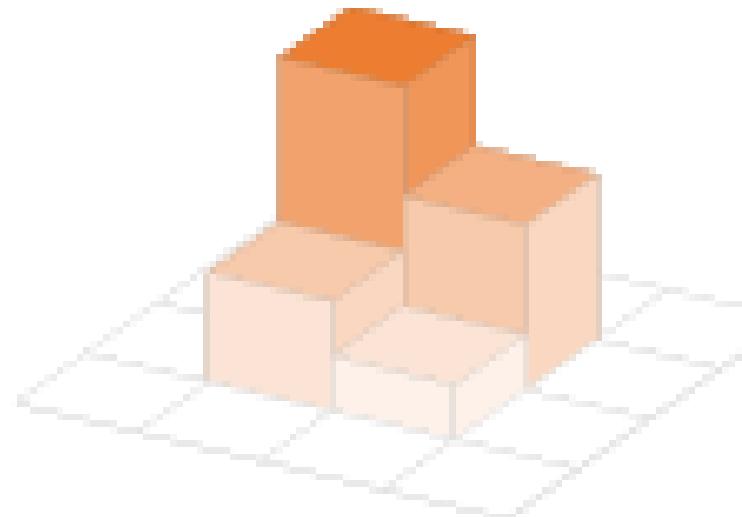
Gaussian mixture



Discrete distribution

$$supp(\pi) = \{-1, +1\}^d$$

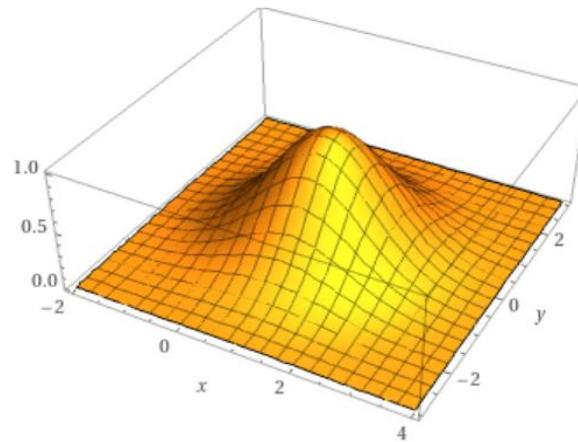
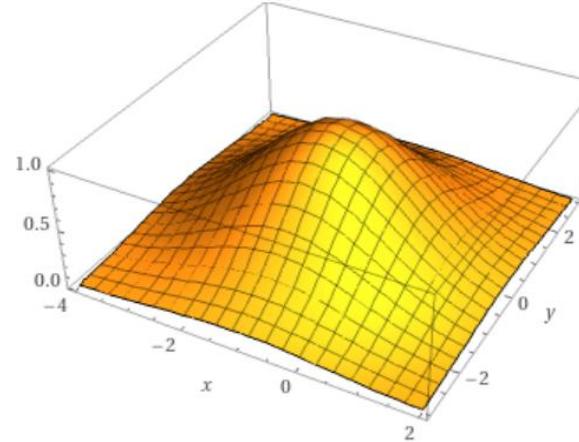
Graphical (Ising) model



Application 1: mixture of Gaussians

If $\pi = \sum_{i=1}^k p_i \pi_i$, $\pi_i: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is *Gaussian*(m_i, Σ_i)

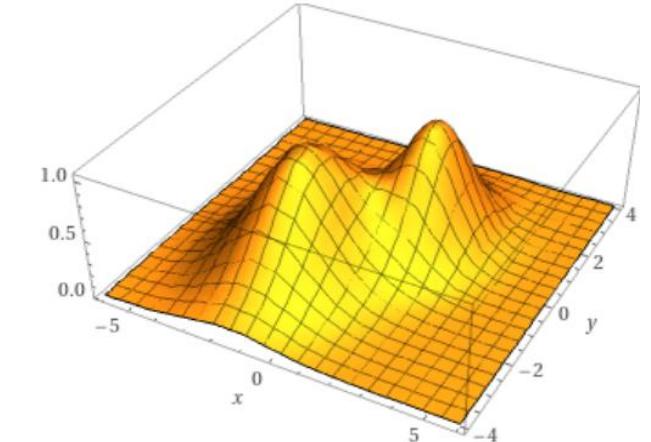
All smooth continuous distribution $\pi \approx$ a mixture of Gaussians



$$\pi_1 = \text{Gaussian}(m_1, \Sigma_1)$$

$$\pi_2 = \text{Gaussian}(m_2, \Sigma_2)$$

$$\pi = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2$$



Application 1: mixture of Gaussians

If $\pi = \sum_{i=1}^k p_i \pi_i$, $\pi_i: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is *Gaussian*(m_i, Σ_i)

All smooth continuous distribution $\pi \approx$ a mixture of Gaussians
 k = measuring complexity of π

Application 1: mixture of Gaussians

If $\pi = \sum_{i=1}^k p_i \pi_i$, $\pi_i: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is *Gaussian*(m_i, Σ_i)

Long-studied testbed for learning & sampling algorithm.

- $k = 1$: [BE'85, Vil'03, VW'19, CELSZ'21]
- $k > 1$:
 - Parameter learning: [Pearson'94, Das'99, SK'01, VW'04, MV'10, HK'13, DS'20, GHK'15]
 - Sampling:
 - ❖ [GLR'18a,b]: Only for isotropic Gaussians, $\Sigma_i = \Sigma \forall i$
 - ❖ [KV23]: For general mixture but has bad runtime dependency on k

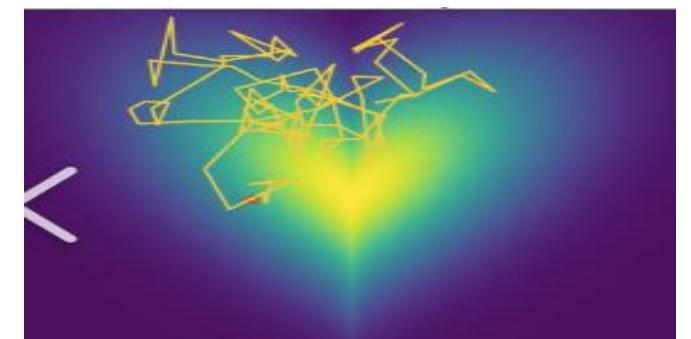
Application 1: mixture of Gaussians

If $\pi = \sum_{i=1}^k p_i \pi_i$, $\pi_i: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is *Gaussian*(m_i, Σ_i), $\alpha I \leq \Sigma_i \leq \beta I$ then:

$\mu_t \equiv$ continuous Langevin initialized at $y_1, \dots, y_n \sim \pi$ i.i.d.
w/ transition probabilities (score function) learned from samples
[Gatmiry-Kelner-Lee'24, Chen-Kontonis-Shah'24]

Continuous Langevin \equiv Noisy gradient ascent

$$dX_t = \underbrace{\nabla \log \pi(X_t)}_{\text{score function}} + \underbrace{dB_t}_{\text{Brownian motion}}$$



Application 1: mixture of Gaussians

If $\pi = \sum_{i=1}^k p_i \pi_i$, $\pi_i: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is Gaussian(m_i, Σ_i), $\alpha I \preccurlyeq \Sigma_i \preccurlyeq \beta I$ then:

μ_t *continuous Langevin initialized at $y_1, \dots, y_n \sim \pi$ i.i.d. w/ transition probabilities (score function) learned from samples*
[Gatmiry-Kelner-Lee'24, Chen-Kontonis-Shah'24]

$d^{poly(\frac{k}{\epsilon_{TV}})}$
samples

Let $n = \Omega\left(\frac{k}{\epsilon_{TV}^2} \log\left(\frac{k}{\rho}\right)\right)$, $T = \frac{\tilde{O}(1)}{\alpha}$

With probability $1 - \rho$, $d_{TV}(\mu_T, \pi) \leq \epsilon_{TV}$

Generalized to mixture of isoperimetric distributions

For $\pi = \sum_{i=1}^k p_i \pi_i$ where π_i satisfies log-Sobolev (Poincare resp.) inequality:

- Convergence time is optimal
- Matches convergence time of the case $k = 1$ i.e. π satisfies log-Sobolev (Poincare resp.) inequality
- Robust to perturbation/discretization/score error

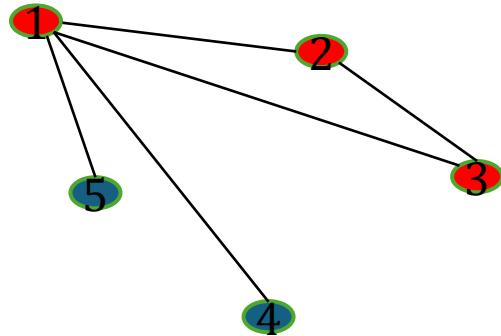
Discussion

For $\pi = \sum_{i=1}^k p_i \pi_i$ where π_i satisfies log-Sobolev (Poincare resp.) inequality:

- Convergence time is optimal
- Matches convergence time of the case $k = 1$ i.e. π satisfies log-Sobolev (Poincare resp.) inequality
- Robust to perturbation/discretization/score error
- If π_i 's are Gaussians then can estimate transition probabilities of denoising diffusion (DDPM) using [GKL'24,CKS'24], but unclear for general isoperimetric π_i

Application 2: low-complexity (low-rank) Ising

Ising model $\pi: \{\pm 1\}^n \rightarrow \mathbb{R}_{\geq 0}, \pi(x) \propto \exp(\frac{1}{2} \langle x, Jx \rangle + \langle h, x \rangle)$:



X_1, \dots, X_n are random variables

- J_{ij} encodes correlation of X_i, X_j
- h_i encodes bias of X_i

Motivation:

- Simplest discrete distribution with non-trivial correlations
- Hopfield network [Lit74, Hop82, PF77]
- Stochastic block model [Sin11, DAM17, AMM+18]
- Bayesian inference in linear regression [DAM17, LM19, MV21, MW24]

Motivation: Bayesian inference in linear regression

[DAM17, LM19, MV21, MW24]

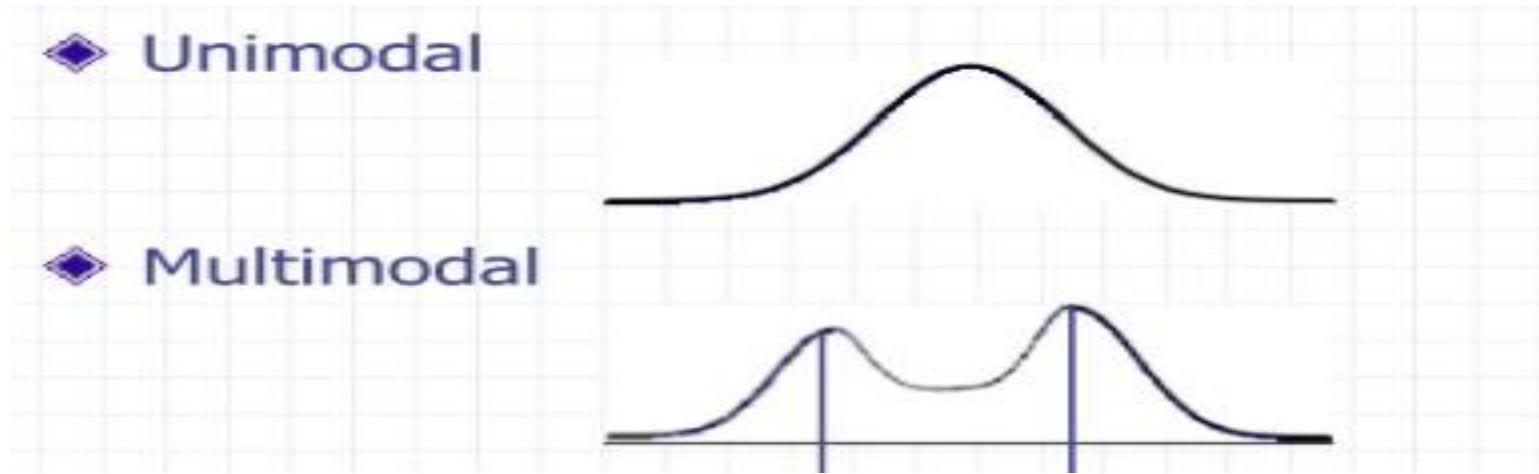
Given observation $y_0 = X\Theta + \text{Gaussian}(0, \sigma^2 I)$,
the Bayesian estimator for Θ with prior $\text{Uniform}(\{\pm 1\}^n)$ is

$$\pi(\theta) \propto \exp\left(-\frac{\|y_0 - X\Theta\|^2}{2\sigma^2}\right) = \text{Ising with } J = X^T X / \sigma^2 \text{ and } h = y_0^T X / 2\sigma^2$$

Note:

- J is PSD
- $\text{Rank}(J) = \dim(y_0) \ll n$

Multimodality of Ising model



Projection of Ising model with $J = \lambda uu^T$, $\|u\| = 1$ to 1-dimension

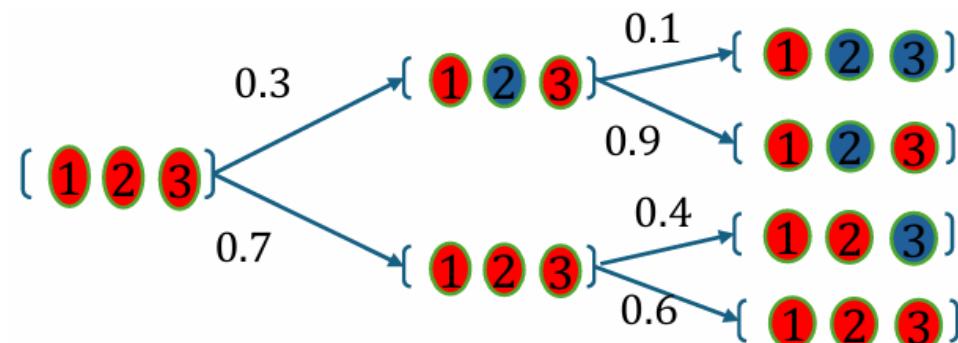
Application 2: low-complexity (low-rank) Ising

Ising model $\pi: \{\pm 1\}^n \rightarrow \mathbb{R}_{\geq 0}, \pi(x) \propto \exp(\frac{1}{2}\langle x, Jx \rangle + \langle h, x \rangle)$:

\approx Low-rank $\left\{ \begin{array}{l} \text{Eigenvalues of } J: \lambda_1 \geq \dots \geq \lambda_r > 1 - \frac{1}{c} \geq \lambda_{r+1} \geq \dots \geq \lambda_n \\ \text{s.t. sum (negative eigenvalues)} \leq O(1) \end{array} \right.$

$\mu_t \equiv$ Glauber initialized at $y_1, \dots, y_n \sim \pi$ i.i.d.

with transition probabilities learned from y_1, \dots, y_n via pseudo-likelihood [Bes75]



Local walk—Glauber:
each step resamples 1 location

Application 2: low-complexity (low-rank) Ising

Ising model $\pi: \{\pm 1\}^n \rightarrow \mathbb{R}_{\geq 0}, \pi(x) \propto \exp(\frac{1}{2}\langle x, Jx \rangle + \langle h, x \rangle)$:

$$\approx_{\text{Low-rank}} \left\{ \begin{array}{l} \text{Eigenvalues of } J: \lambda_1 \geq \dots \geq \lambda_r > 1 - \frac{1}{c} \geq \lambda_{r+1} \geq \dots \geq \lambda_n \\ \text{s.t. sum (negative eigenvalues)} \leq O(1) \end{array} \right.$$

$\mu_t \equiv \text{Glauber initialized at } y_1, \dots, y_n \sim \pi \text{ i.i.d.}$

with transition probabilities learned from y_1, \dots, y_n via pseudo-likelihood

Let $n = \Omega\left((nr\lambda_1)^{O(r)} \log(\frac{1}{\rho})/\epsilon_{TV}^4\right), T = \tilde{O}(n\lambda_1)$

With probability $1 - \rho$, $d_{TV}(\mu_T, \pi) \leq \epsilon_{TV}$

Discussion

Ising model $\pi: \{\pm 1\}^n \rightarrow \mathbb{R}_{\geq 0}, \pi(x) \propto \exp(\frac{1}{2}\langle x, Jx \rangle + \langle h, x \rangle)$:

$$\approx \text{Low-rank} \left\{ \begin{array}{l} \text{Eigenvalues of } J: \lambda_1 \geq \dots \geq \lambda_r > 1 - \frac{1}{c} \geq \lambda_{r+1} \geq \dots \geq \lambda_n \\ \text{s.t. sum (negative eigenvalues)} \leq O(1) \end{array} \right.$$

- If $r = O(1)$, new efficient (distribution) learner
- Separation between parameter learning & distribution learning

$\Omega(\exp(n))$
samples

$poly(n)$
samples

Proof

Challenge

- Most analysis techniques only handle convergence time from worst-case start

Challenge

- Most analysis techniques only handle convergence time from worst-case start
- Exceptions:
 - Glauber on symmetric Ising & related models [GS22; BGZ24; BMP21; Cuf+12; LLP10; DLP09a; DLP09b; GGS24]: exploit special properties in stat. physics setting (symmetry, monotonicity)

Challenge

- Most analysis techniques only handle convergence time from worst-case start
- Exceptions:
 - Glauber on symmetric Ising & related model
 - Langevin on Gaussian mixtures [KV23]: bad dependency on $k = \#\text{components}$.
Can only bound convergence time $T \leq 2^{2^k}$ since:
 - ❖ Proof looks at how component overlaps,
 - ❖ Becomes very complicated as the overlaps structure has exponential dependency on k

This work

- Tight bounds and exponentially improve on [KV23]
- Unifying proof for continuous and discrete distributions
- Reduce to higher eigenvalue gap

- Most analysis techniques only handle convergence time from worst-case start
- Previous Exceptions:
 - Glauber on symmetric Ising/Potts model: exploit special properties
 - Langevin on Gaussian mixtures [KV23]: Bad dependency on #components due to overlapping analysis

Mixing time and eigenvalues of Markov transition matrix

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$

Thm (classical): mixes in $\approx \frac{1}{1-\lambda_2}$ steps from worst case start

Fast mixing from empirical sample under higher-order eigenvalue gap

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$

Thm (classical): mixes in $\approx \frac{1}{1-\lambda_2}$ steps from worst case start

Thm (this work): mixes in $\approx \frac{1}{1-\lambda_k}$ steps when starts at a randomly chosen y_i among $n \approx k$ samples $y_1, \dots, y_n \sim \pi$

Higher order eigenvalue gap of mixtures

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$

Thm (this work): mixes in $\approx \frac{1}{1-\lambda_k}$ steps when starts at a randomly chosen y_i among $n \approx k$ samples $y_1, \dots, y_n \sim \pi$

Thm (this work): $\pi = \sum_{i=1}^k p_i \pi_i$ and 2nd-eig of Glauber/Langevin for $\pi_i \leq 1 - \sigma$ then k-th eig of Glauber/Langevin for $\pi \leq 1 - \sigma$

Application:

- Mixture of Gaussians/isoperimetric continuous distribution
- Low-rank Ising \approx mixture of high-temperature Isings with second eigenvalue gap [KLR22,AKV24]

Fast mixing from empirical sample under higher-order eigenvalue gap

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$ with eigenvectors $1 \equiv f_1, f_2, \dots$

Thm (this work): mixes in $\approx \frac{1}{1-\lambda_k}$ steps when starts at a randomly chosen y_i among $n \approx k$ samples $y_1, \dots, y_n \sim \pi$

Lem:

$\mu_0 \equiv$ initialization. If $\sum_{i=1}^k \|\langle \mu_0, f_i \rangle\|^2 \leq \epsilon^2$, $t = \frac{\log\left(\frac{1}{\epsilon}\right)}{1-\lambda_k}$

$$d_{TV}(\mu_t, \pi) \leq \epsilon$$

Fast mixing from empirical sample under higher-order eigenvalue gap

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$ with eigenvectors $1 \equiv f_1, f_2, \dots$

Thm (this work): mixes in $\approx \frac{1}{1-\lambda_k}$ steps when starts at a randomly chosen y_i among $n \approx k$ samples $y_1, \dots, y_n \sim \pi$

Lem: $\mu_0 \equiv$ initialization. If $\sum_{i=1}^{k-1} \|\langle \mu_0, f_i \rangle\|^2 \leq \epsilon^2$, $t = \frac{\log(\frac{1}{\epsilon})}{1-\lambda_k}$, $d_{TV}(\mu_t, \pi) \leq \epsilon$

Lem: $\mu_0 \equiv \frac{1}{n} \sum \delta_{y_i}$. If $n \geq \frac{k}{\epsilon^2} \log\left(\frac{k}{\rho}\right)$ then w. prob $1 - \rho$

$$\sum_{i=1}^k \|\langle \mu_0, f_i \rangle\|^2 \leq \epsilon^2$$

Fast mixing from empirical sample under higher-order eigenvalue gap

Transition probability matrix P : $P(x, y) = \mathbb{P}[X_{t+1} = y | X_t = x]$

Eigenvalues of P : $1 = \lambda_1 \geq \lambda_2 \geq \dots$ with eigenvectors $1 \equiv f_1, f_2, \dots$

Lem: $\mu_0 \equiv \frac{1}{n} \sum \delta_{y_i}$. If $n \geq \frac{k}{\epsilon^2} \log\left(\frac{k}{\rho}\right)$ then w. prob $1 - \rho$, $\sum_{i=1}^{k-1} \|\langle \mu_0, f_i \rangle\|^2 \leq \epsilon^2$

$$\mathbb{E}_{y \sim \pi} [\langle \delta_y, f_i \rangle] = \langle \pi, f_i \rangle = 0$$

$$\mathbb{E}_{y \sim \pi} [\langle \delta_y, f_i \rangle^2] = \langle f_i, f_i \rangle = 1$$

We could use Chebyshev, but only get $n \geq \frac{k}{\epsilon^2 \rho}$

New trick: restrict to y with bounded $|\langle \delta_y, f_i \rangle|$ and use Bernstein+ triangle ineq. to deal with remaining y

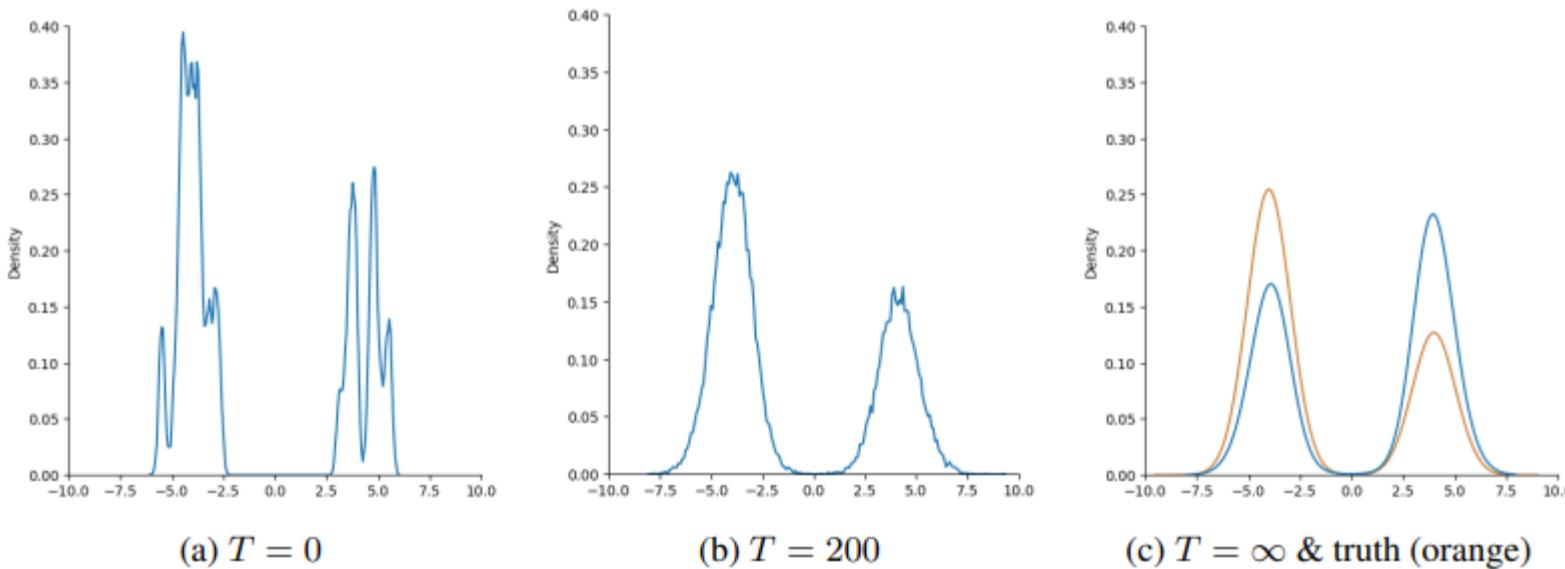
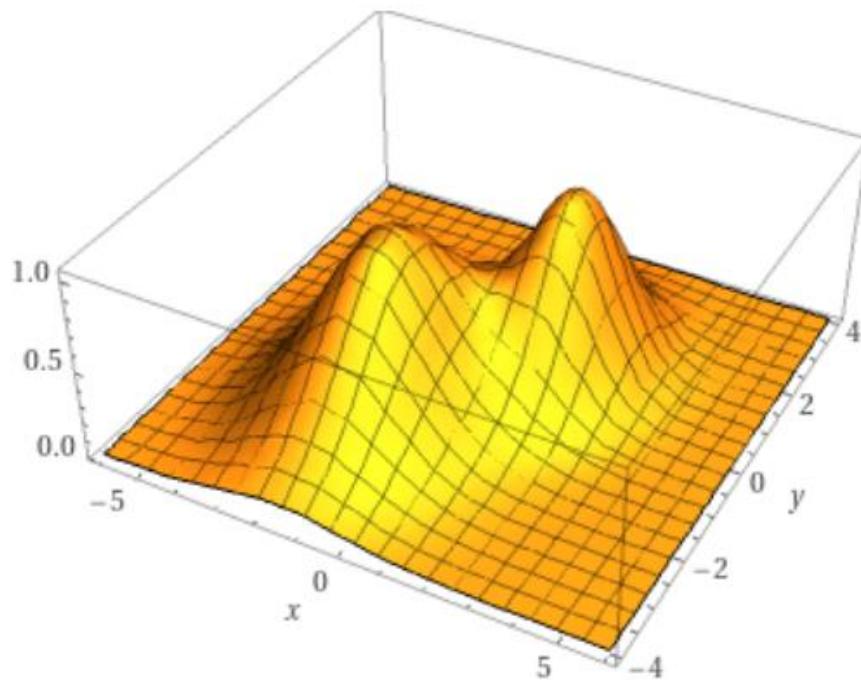
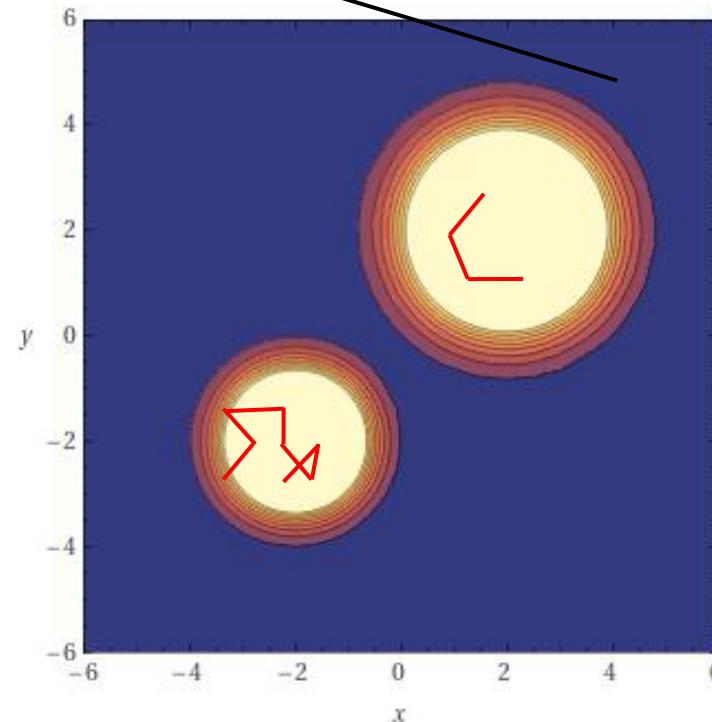


Figure 1: Visualization of the distribution of the Langevin dynamics after T iterations when initialized at the empirical distribution and run with an approximate score function estimated from data. Orange density (rightmost figure) is the ground truth mixture of two Gaussians; the empirical distribution (leftmost figure, $T = 0$) consists of 40 iid samples from the ground truth. Langevin dynamics with step size 0.01 is run with an estimated score function, which was fit using vanilla score matching with a one hidden-layer neural network trained on fresh samples; densities (blue) are visualized using a Gaussian Kernel Density Estimate (KDE). Matching our theory, we see that the ground truth is accurately estimated at time $T = 200$ even though it is not at $T = 0$ or ∞ .

Langevin with data-based initialization:

$$X_0 = x \sim \text{Uniform}(\{\text{training samples}\});$$

$$X_{(n+1)h} - X_{nh} = \nabla \log \mu(X_{nh})h + \mathcal{N}(0, 2h)$$



Trajectories of Langevin initialized at training samples x_1, x_2