Learning and sampling multimodal distributions
with data-based initialization

Thuy-Duong “June” Vuong
UC Berkeley

Joint work with Holden Lee and Frederic Koehler
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Learning to sample

* Input: Training samples y4, -+, y, ~ m.i.i.d.

* OQutput: Algorithm A that generates many
new samples
¢ USG randOm Walk e (Guarantee:

Let iy = Dist(A(u, )i DY = {y1, -» Yn})
With probability = 1 — § over yq, -+, y, ~ ,
dry(Ty, u) < €

e How to construct A?




Algorithm



Random walk

[teratively move between states
’R )R according to probabilistic rule:
‘.R e WY e HE
7




Random choices induces sequence of

distributions

[teratively move between states
)R )R according to probabilistic rule:

;R — X0 5 X1 5 X% > .. o>X!
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Sampling algorithm:

* Choose transition rule s.t.
X0oXtoX?5 .oXts v or
and each step is easy to implement

e Start at arbitrary X°, do T steps of
random walk and output X’

« Hope:d;, (X', m) < € and T not too
large



Sampling algorithm:
Non-loca e Choose transition rule s.t.
X055 XX L oXto oo

and each step is easy (e.g. local)

Start at arbitrary X°, do T steps of
random walk and output X7

Local « Hope:dry (X', m) < € and T not too
large

Local walk = locations at step t
and t+1 are close



Issues:

Don't directly have access to
transition probability in our
setting

For some i, T can be very
large

Sampling algorithm:

* Choose transitionrules.t. X; » m
and each step is easy (e.g. local)

e Start at arbitrary X°, do T steps of
random walk and output X’

e Hope: d;, (X', 7) < € and T not too
large



Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data




Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data

* For multimodal 7, convergence
time T is large

* Multimodality due to non-homogeneity

_/\ Example: human height distribution
# Multimodal

* Multimodality — slow convergece.

— 7

4 Unimodal




Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data

* For multimodal 7, convergence
time T is large

_ﬂ 4\ * Local walk avoid moving into low-probability
1 regions

* Avoid the valley/bottleneck between peaks

* Cannot cross from one peak to another 7




Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data

* For multimodal 7, convergence
time T is large
- -/ fk 1. Local walk: fails Annea]ing;
— 2. Annealing: fails | : : :
K (GLR'18] Removes multimodality by flattening

0.5 P

T\ * Slow mixing for simple bimodal u [GLRr18]

nO'L/rl T/N 7




Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data

* For multimodal u, convergence
time T is large

1. Local walk: fails . . . .
N/ o Denoising diffusion (DDPM):
H -/ \—/ 2. Annealing: fails
l 1 3. Denoising diffusion |*® For continuous distr
HTDOISE TN » Transition prob. of discrete analog is
| 1 hard to learn 7

Pure
noise _/\ |



Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues:

 Don'tdirectly have access to
transition probability

* For multimodal 7, convergence

time T is large

T +noise . Py

Pure 1 T

noise _/\

n /] '
T[-/ N \ 2.

Local walk: slow
Annealing: slow

Denoising diffusion:
fast convergence but
transition probabilities
is hard to learn

Fix:
For some RW, can estimate
transition probabilities from
training data



Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues: Fix:
 Don'tdirectly have access to * For some RW, can estimate
transition probability transition probabilities from

training data

* For multimodal 7, convergence

time T i 1s large
 Local walk cannot

-ﬂ /IL move between peaks




Goal: run random walk s.t. X; = u

& each step is easy (e.g. local)

Issues:

 Don'tdirectly have access to
transition probability

* For multimodal 7, convergence

tlme Ti 1s large

JW\

Local walk cannot
move between peaks

What if we start local
walks from all peaks?

* Average distr. over

workers converge to
u very fast

Fix:

For some RW, can estimate
transition probabilities from
training data

Start local walk from training
samples

Expect to mix fast if #samples is
large enough to cover the peaks



Our framework

Issues: Algorithm:
* Don’t directly have access to * For local walk, can provably
transition probability estimate transition

probabilities from training data

* For multimodal i, convergence  Prove that local walk from

tlme Ti 1s large empirical distribution over training
Local walk cannot samples converge to 7 fast if
-ﬂ /IL move between peaks :
#samples is large enough to cover

What if we start local
walks from all peaks? the peaks

Average distr. over
workers converge to
u very fast




Application



Continuous distribution Discrete distribution
supp(m) = R4 ‘ " supp(m) = {—1,+1}4

Gaussian mixture Graphical (Ising) model




Application 1: mixture of Gaussians

All smooth continuous distribution T =~ a mixture of Gaussians

m;= Gaussian(my, %) m, = Gaussian(m,, X,) 1 1



Application 1: mixture of Gaussians

All smooth continuous distribution T ~ a mixture of Gaussians
k = measuring complexity of T




Application 1: mixture of Gaussians

Long-studied testbed for learning & sampling algorithm.
e k = 1:[BE'85Vil'03,VW19,CELSZ'21]

e k>1.
* Parameter learning: [pearson'94,Das'99,5K’01,yW’04,MV'10,HK'13,DS'20,GHK'15]
 Sampling:

# [GLR'18a,b]: Only for isotropic Gaussians, X; = XVi

+ [Kv23]: For general mixture but has bad runtime dependency on k




Application 1: mixture of Gaussians

Ifr =Y pym;,mi: R > Ry is Gaussian(m;, %;), al < %; < BI then:

Uz = continuous Langevin initialized atvyy, ..., y, ~ T LLd.

w/ transition probabilities (score function) learned from samples
[Gatmiry-Kelner-Lee’24,Chen-Kontonis-Shah’24]

Continuous Langevin = Noisy gradient ascent
dX; = Vlog m(X;) + dB;

—

score Brownian
function motion




Application 1: mixture of Gaussians

Ifr =Y pym;,mi: R > Ry is Gaussian(m;, %;), al < %; < BI then:

Uz = continuous Langevin initialized atvyy, ..., y, ~ T LLd.

w/ transition probabilities (score function) learned from samples
[Gatmiry-Kelner-Lee’24,Chen-Kontonis-Shah’24]

— Letn=ﬂ(%log(%)),T=@

poly(c—) Ty :
d TV With probability 1 — p, dry (ur, @) < €7y

samples




Generalized to mixture of isoperimetric distributions

Form = ?:1 p;T; where m; satisfies log-Sobolev (Poincare resp.) inequality:

* Convergence time is optimal

* Matches convergence time of the case k = 1 i.e. T satisfies log-Sobolev
(Poincare resp.) inequality

* Robust to perturbation/discretization/score error



Discussion

Form = ?:1 p;T; where m; satisfies log-Sobolev (Poincare resp.) inequality:

* Convergence time is optimal

* Matches convergence time of the case k = 1 i.e. T satisfies log-Sobolev
(Poincare resp.) inequality

* Robust to perturbation/discretization/score error

* Ifm;’s are Gaussians then can estimate transition probabilities of
denoising diffusion (DDPM) using [ckr24,cks24], but unclear for general
iIsoperimetric 7;



Application 2: low-complexity (low-rank) Ising

[sing model m: {+1}" - R.,, m(x) exp(% (x,Jx) +(h, x)):

X4, -, X, are random variables
* Jjj encodes correlation of X;, X;

* h; encodes bias of X;

Moftivation:

Simplest discrete distribution with non-trivial correlations
Hopfield network [Lit74,Hop82,PF77)

Stochastic block model [sin11,0aM17,AMM+18]

Bayesian inference in linear regression [pam17, LM19, MvV21,MW24]



Motivation: Bayesian inference in linear regression

[DAM17, LM19, MV21,MW24]

Given observation y, = X0O + Gaussian(0,a%]),
the Bayesian estimator for ©® with prior Uniform({+1}") is
m(0) « exp(

|lyo—xel|’

202

) = Ising with ] = X"X /0% and h = y; X /20°

Note:
+ [isPSD
« Rank(J) =dim(yy;) < n



Multimodality of Ising model

* Unimodal

A A1<1

* Multimodal

—/,r -/;/!\ A>1

Projection of Ising model with] = Auu’, ||u|| = 1 to 1-dimension




Application 2: low-complexity (low-rank) Ising

Ising model m: {+1}" - R., m(x) « exp(— (x,]x) 4+ (h, x)):
o ) Eigenvaluesof J: 4, = - =24, > 1 —- - > Ary1 = 2= Ay
SO s.t. sum (negatlve elgenvalues) < 0(1)

Uy = Glauber initialized atyy, ..., y, ~ T LLd.
with transition probabilities learned fromvy,, ..., y, via pseudo-likelihood [pes75]

s ... 0.1 :..]

00

[“. ,%[ooo
000

000

Local walk—Glauber
each step resamples 1 location



Application 2: low-complexity (low-rank) Ising

[sing model m: {+1}" - R.,, m(x) exp(— (x,]x) 4+ (h, x)):

Eigenvaluesof J: 4, = - =24, > 1 —- - > Ary1 = 2= Ay
~Low-rank
s.t. sum (negatlve elgenvalues) < 0(1)

Uy = Glauber initialized atvyy, ..., y, ~ T LLd.
with transition probabilities learned fromvy., ..., y, via pseudo-likelihood

Letn = Q ((nrﬂl)o(’")log(%)/eﬁv) T = 0(niy)
With probability 1 — p, dry (ur, ™) < €7y



Discussion

[sing model m: {+1}" - R.,, m(x) exp(— (x,]x) 4+ (h, x)):

Eigenvaluesof J: 4, = - =24, > 1 —- - > Ary1 = 2= Ay
~Low-rank
s.t. sum (negatlve elgenvalues) < 0(1)

« Ifr = 0(1), new efficient (distribution) learner
e Separation between parameter learning & dlstrlbutlon learning

Q(exp(n)) poly(n)
samples samples




Proof



* Most analysis techniques only handle
Challe nge convergence time from worst-case start




Challenge

* Most analysis techniques only handle
convergence time from worst-case start

* Exceptions:

* Glauber on symmetric Ising &
related models [Gs22; BGz24; BMP21; cuf+12;
LLP10; DLP09a; DLP09b; GGS24]: exploit special
properties in stat. physics setting
(symmetricity, monotonicity)




Challenge

* Most analysis techniques only handle
convergence time from worst-case start

* Exceptions:

* Glauber on symmetric Ising &
related model

* Langevin on Gaussian mixtures [kv23]:
bad dependency on k =
#components.
Can only bound convergence time
T < 22"since:

% Proof looks at how component overlaps,

¢ Becomes very complicated as the overlaps
structure has exponential dependency on k



This work

Tight bounds and
exponentially
improve on [Kv23]

Unifying proof for
continuous and
discrete distributions

Reduce to higher
eigenvalue gap

* Most analysis techniques only handle
convergence time from worst-case start

* Previous Exceptions:

* Glauber on symmetric Ising/Potts
model: exploit special properties

* Langevin on Gaussian mixtures
kv23]: Bad dependency on
#components due to overlapping
analysis




Mixing time and

eigenvalues of Markov transition matrix

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvaluesof P:1 =14, =2 4, = -

Thm (classical): mixes in = steps from worst case start

1-1,



Fast mixing from empirical sample under

higher—order eigenvalue gap

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvaluesof P:1 =14, =2 4, = -

Thm (classical): mixes in = steps from worst case start

1-1,
1
1-Ap
chosen y; amongn = k samples y4, ..., y, ~ @

Thm (this work): mixes in = steps when starts at a randomly



Higher order eigenvalue gap of mixtures

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvaluesof P:1 =14, =2 4, = -

1
1-Ap
chosen y; amongn = k samples y4, ..., y, ~ @

Thm (this work): m = Y, p;m; and 2"-eig of Glauber/Langevin for
m; < 1 — o then k-th eig of Glauber/Langevinformr <1 —o¢

v

Thm (this work): mixes in = steps when starts at a randomly

Application:

* Mixture of Gaussians/isoperimetric continuous distribution

 Low-rank Ising = mixture of high-temperature Isings with second eigenvalue
gap [KLR22,AKV24]




Fast mixing from empirical sample under

higher—order eigenvalue gap

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvalues of P:1 = 1; = A, = --- with eigenvectors 1 = f4, f5, ...

Thm (this work): mixes in = steps when starts at a randomly

1-Ap
chosen y; amongn = k samples y4, ..., y, ~ @

Lem:

e b 1o k 2 2 lo8\e)
U = initialization. If )., |[{uo, fi) |17 < €°,t= 1

dry(Ue, ) < €



Fast mixing from empirical sample under

higher—order eigenvalue gap

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvalues of P:1 = 1; = A, = --- with eigenvectors 1 = f4, f5, ...

steps when starts at a randomly

Thm (this work): mixes in ~ —
—k
chosen y; amongn = k samples yy, ...,y, ~ 7

og(!)

Lem:u, = initialization. If Y5t |[{uo, i) |12 < €%,t = PETI dry(Up,T) < €
—Ak

2.0y, Ifn>—log()thenwprob1 P

2
ZH(Mo»fi) | <e
=1

S|

Lem:u, =



Fast mixing from empirical sample under

higher—order eigenvalue gap

Transition probability matrix P: P(x,y) = P|X;+1 = y|X; = x]
Eigenvaluesof P:1 = A1; = 1, = --- with eigenvectors 1 = f4, f5, ...

Lem:u, = %25 fn > —log( )thenw prob1 —p, X1 (uo, f;) |7 < €2

Ey-r[(8y, fi)] = (. fi) = 0
Ey~r {8y, fi) | = (funfi) = 1

We could use Chebyshev, but only getn > 25
New trick: restrict to y with bounded |(6y, fi)| and
use Bernstein+ triangle ineq. to deal with remaining y
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Figure 1: Visualization of the distribution of the Langevin dynamics after 7' iterations when initialized
at the empirical distribution and run with an approximate score function estimated from data. Orange
density (rightmost figure) is the ground truth mixture of two Gaussians; the empirical distribution
(leftmost figure, 7' = () consists of 40 iid samples from the ground truth. Langevin dynamics with
step size (.01 is run with an estimated score function, which was fit using vanilla score matching
with a one hidden-layer neural network trained on fresh samples; densities (blue) are visualized using
a Gaussian Kernel Density Estimate (KDE). Matching our theory, we see that the ground truth is
accurately estimated at time 7" = 200 even though it is not at 7" = () or oc.



Langevin with data-based initialization:
Xy = x ~ Uniform({training samples});
Xm+1h — Xnp = Vlog #(Xpn)h + V(0,2h)

Trajectories of Langevin initialized at
training samples x, x5
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