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Given p1, · · · , pn ≥ 0.
Draw element from {1, · · · , n} with P[drawing i] ∝ pi.

np.random.choice(n, weight︸ ︷︷ ︸
[p1,··· ,pn ]

, cumulative-weight*︸ ︷︷ ︸
[p1,p1+p2,··· ,p1+···+pn ]

, num-sample*)

pi

i = 1 2 3 4 5 6 7

. . .

n
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With cumulative-weight, can reduce runtime from θ(n) to θ(log n).
Can we do the same for µ with sup(µ) = nω(1)?
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Sampling from discrete distributions

Problem:
Given oracle access to µ : ([n]k ) → R≥0, approximately sample:

S ∼ µ : P[S] ∝ µ(S).

ϵ-approximate sample: sample S ∼ µ′ s.t. dTV(µ, µ′) ≤ ϵ.

Domain Sparsification

Reducing the task of sampling from µ on ([n]k ) to sampling from a
related distribution ν on (T

k) such that:

|T| ≪ n.
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Counting by repeated sampling

Approximate count |Ω| : Compute Ẑ s.t. Ẑ ≤ Ω ≤ (1 + ϵ)Ẑ

µ is uniform over Ω ⊆ ([n]k )

Approximate sampling from µ ⇔ Approximate counting |Ω|
Jerrum-Valiant-Vazirani’86

To count |Ω|, need to produce many samples from µ. We want
to reduce the amortized time-complexity per sample.
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Examples

Determinantal point processes Spanning trees / forests

k-Matchings
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Determinantal Point Processes (DPPs)

Given: Matrix L ∈ Rn×n

P[S] ∝ det(LS) when |S| = k

Example: S = {1, 2, 4}

8 8 1 6 1 0

3 8 5 7 2 4

4 8 9 5 3 3

4 8 9 2 2 3

3 7 9 5 3 3

4 8 6 1 3 0







Application:

Recommender system Gillenwater-Kulesza-Taskar’12

Image Search Kulesza-Taskar’11

RandNLA Dereziński-Mahonet–AMS Notices’21

When L = L⊺, can write L = VV⊺ where

V =




−v1−
...

−vn−


 , then

P[S] ∝ Volume2(vectors indexed by S
)

Gartrell et al’19,20 consider nonsymmetric DPP
(L + L⊺ ⪰ 0) for its enhanced modelling power.
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Outline

1 Background

2 Isotropy for discrete distributions and isotropic transformation

3 Intermediate sampling

4 Domain sparsification: n → n1−αpoly(k)
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A brief history

n → n1−αpoly(k)

Minimal assumption: entropic independence
Counting planar matchings

Sampling from non-symmetric DPPs

Need: very strong HDX

n → poly(k)

Counting matroid bases

Sampling from log-concave
distributions

n → poly(k)
Volume sampling

(Symmetric) determinantal point
processes

Need: negative correlation

Durfee-Peebles-Peng-Rao’17; Dereziński [COLT 2019]; Calandriello- Dereziński-Valko
[NeurIPS 2019, 2020]
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Anari-Dereziński [FOCS 2020]
8 / 29



A brief history

n → n1−αpoly(k)

Minimal assumption: entropic independence
Counting planar matchings

Sampling from non-symmetric DPPs

Need: very strong HDX

n → poly(k)

Counting matroid bases

Sampling from log-concave
distributions

n → poly(k)
Volume sampling

(Symmetric) determinantal point
processes

Need: negative correlation
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Isotropy for discrete distributions

Definition (Anari-Dereziński–FOCS’20)

Density µ : ([n]k ) → R≥0 is (nearly) isotropic if PS∼µ[i ∈ S] are
(nearly) the same for all i ∈ [n].

Transformation to isotropic position:

P[i ∈ S]

i = 1 2 3 4 5 6 7

. . .

n

Intuition: Duplicate elements proportionally to the marginals.
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Converting to isotropic position

Goal: Efficiently estimate all marginals PS∼µ[i ∈ S]

For DPPs: Marginals (leverage score/effective resistant) are
computable in polynomial time

In general: Approximate estimate the marginals by sampling
and counting/sampling equivalence Jerrum-Vazirani-Vazirani’84

Matroid bases
Fractionally log-concave distributions (nonsymmetric DPPs,
planar matchings)

Can speed-up estimating the marginals via an annealing process
(see Anari-Dereziński–FOCS’20)
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How can we use isotropy to accelerate sampling?
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Simple idea: Intermediate sampling

Assumption: µ is nearly isotropic

1 Intermediate uniform sample:

T ∼
(
[n]
t

)
, k < t < n

2 Downsample: S ∼ µ|T

[n]

T S

Domain sparsification from [n] to T? Not quite!
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Markov chain intermediate sampling

Instantly mixing walk

S0

⟨ρ1, ..., ρt⟩

⟨σ1, ..., σt, ..., σt+k⟩

S1 ∼ µσ

[n]

S0

ρσ S1

Hierarchical walk to address generating S1 ∼ µσ

S0

S0,0 . . . S0,s

S1

local down-up walk →

Alimohammadi-Anari-Shiragur-V–STOC’21

S1,0 . . . S1,s

S2
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Example: Bipartite graph

For graph G = G([n], E), consider µ

uniform over E ⊆ ([n]2 )

Intermediate sampling
[n]

T S

t := |T| = o(
√

n):
(

T
k

)
∩ supp(µ) = ∅ almost surely

n

k = 2
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In general: Birthday paradox for k-collisions

Generally, for µ : ([n]k ) → R≥0, we need t ≃ n1−1/k intermediate
samples to find a set S ∈ supp(µ).
Think: µ encodes a hypergraph

When can we make t = n0.9?
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Generating polynomial

For distribution µ : ([n]k ) → R≥0, let its generating polynomial be

fµ(z1, . . . , zn) = ∑
S

µ(S)zS = ∑
S

µ(S)∏
i∈S

zi

fµ ≡ extension of µ on Rn.
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Entropic independence Anari-Jain-Koehler-Pham-V’21

Distribution µ : ([n]k ) → R≥0 is (1/α)-entropically-independent for
α ∈ (0, 1] if, let pi = PS∼µ[i ∈ S]/k:

Definition 1: Geometry of polynomial

For all zi ≥ 0

fµ(zα
1 , · · · , zα

n)
1

αk ≤
n

∑
i=1

pizi

Definition 2: Entropy contraction

For all distribution ν : ([n]k ) → R≥0

DKL(marginal of ν | marginal of µ) ≤ 1
αk

DKL(ν | µ).
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Entropic independence: examples

1/α-entropic independence with higher α ↔ stronger assumption

Every distribution is 1/α-entropic independence with α ≥ 1/k
because by AM-GM

fµ(z1/k
1 , · · · , z1/k

n ) = ∑ µ(S)(∏
i∈S

zi)
1/k ≤ ∑ µ(S)∑i∈S zi

k

α = 1: Spanning tree/symmetric DPPs/uniform distribution
over matroid bases

α = 1/4: k-matchings in graph, non-symmetric DPPs

Isotropic transformation preserve entropic independence
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Domain sparsification: A general framework

Theorem

Let µ : ([n]k ) → R≥0 be (1/α)-entropically independent.

Suppose that we have an algorithm A that can produce approximate
samples from any external field λ applied to µ in time T(m, k), where m is
the sparsity of λ. Then, we can:

1 convert µ to nearly-isotropic position in time

O
(

T(n, k) + n · poly(k, log n) · T(n1−αpoly(k), k)
)

.

2 approximately sample from a nearly-isotropic µ in time

O
(

T(n1−αpoly(k), k)
)

.
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Application

Approximate counting size-k matchings in planar graph in time
O(poly(k)n2 + poly(k)n3/2ϵ−2)

i.e. output Ẑ s.t. Ẑ ≤ #matching ≤ (1 + ϵ)Ẑ
After Õ(nk2 + k3) pre-processing, producing sample from

Nonsymmetric k-DPP: Õ(poly(k)n3/2) time.
For rank-d kernel: Õ(poly(k)n3/4d2)-time
Symmetric k-DPP: Õ(poly(k)) time.
Anari-Liu-V’21 (subsequent work): Õ(kω) per sample w/ Õ(nkω−1)

preprocessing.

For any distribution: after pre-processing, reducing domain size
from n to n1−1/k.
This matches birthday-paradox threshold.
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Domain size is tight!

Can “higher-order marginals” PS∼µ[I ⊆ S] help?

Theorem

For any α ∈ (0, 1] and large enough n, k, there is a distribution
µ : ([n]k ) → R≥0 such that:

1 µ satisfies (1/α)-entropic independence; and
2 any domain sparsification scheme to sample from µ requires

t = Ω̃(n1−α), even when given higher-order marginals.

24 / 29



High level proof idea
[n]

T S0S

Intermediate sampling Markov chain: S0 → S1 → · · · ↠ µ

Prove intermediate sampling Markov chain has instant-mixing:
P[S1] ≥ µ(S)(1 − 0.1).

Lower bound P[S1]
µ(S) by (E

T′∼([n]\R
t−2k )

[ ∑
S′⊂(T′∪R)

µ(S′)]

︸ ︷︷ ︸
(∗)

)−1,

with R = S ∪ S0.
Rewrite

(∗) = (t/n)k fµ(· · · , (n/t)︸ ︷︷ ︸
i∈R

, · · · , 1︸︷︷︸
i ̸∈R

)

⪯
EI

(t/n)k exp(αk ∑
i∈(S0∪S)

pi︸︷︷︸
1
n

(n/t)1/α).
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Conclusions

Domain sparsification: A general paradigm for reducing the
complexity of (repeated) sampling

Enables high-precision counting for many problems,
e.g., counting k-matching in planar graph, size k forests etc.

Our work generalizes Anari-Dereziński–FOCS’20’s domain sparsification
framework.
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Open problem

Reduce domain size to poly(k) given higher-order marginals, when µ
is α-fractionally log-concave

α-FLC is strictly stronger assumption than α-entropic
independence

Another way to generalize Anari-Dereziński–FOCS’20

Applications: for nonsymmetric DPPs, partition constraint DPP,
k-matchings.
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Thank you!
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