Domain Sparsification of Discrete
 Distributions using Entropic Independence

Nima Anari Michal Dereziński Thuy-Duong Vuong Elizabeth Yang

ITCS 2022

November 19, 2022

Given $p_{1}, \cdots, p_{n} \geq 0$.
Draw element from $\{1, \cdots, n\}$ with $\mathbb{P}[$ drawing $i] \propto p_{i}$.
np.random.choice $(n, \underbrace{\text { weight }}_{\left[p_{1}, \cdots, p_{n}\right]}, \underbrace{\text { cumulative-weight* }}_{\left[p_{1}, p_{1}+p_{2}, \cdots, p_{1}+\cdots+p_{n}\right]}$, num-sample ${ }^{*}$)

Given $p_{1}, \cdots, p_{n} \geq 0$.
Draw element from $\{1, \cdots, n\}$ with $\mathbb{P}[$ drawing $i] \propto p_{i}$.
np.random.choice (n, weight, cumulative-weight ${ }^{*}$, num-sample ${ }^{*}$)
$\left[p_{1}, \cdots, p_{n}\right]\left[p_{1}, p_{1}+p_{2}, \cdots, p_{1}+\cdots+p_{n}\right]$
With cumulative-weight, can reduce runtime from $\theta(n)$ to $\theta(\log n)$.

Given $p_{1}, \cdots, p_{n} \geq 0$.
Draw element from $\{1, \cdots, n\}$ with $\mathbb{P}[$ drawing $i] \propto p_{i}$.
np.random.choice ($n, \underbrace{\text { weight }]}_{\left[p_{1}, \cdots, p_{n}\right]}, \underbrace{\text { cumulative-weight } *}_{\left[p_{1}, p_{1}+p_{2}, \cdots, p_{1}+\cdots+p_{n}\right]}$, num-sample ${ }^{*}$)
With cumulative-weight, can reduce runtime from $\theta(n)$ to $\theta(\log n)$.
Can we do the same for μ with $\sup (\mu)=n^{\omega(1)}$?

Sampling from discrete distributions

Problem:
Given oracle access to $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$, approximately sample:

$$
S \sim \mu: \quad \mathbb{P}[S] \propto \mu(S)
$$

ϵ-approximate sample: sample $S \sim \mu^{\prime}$ s.t. $d_{T V}\left(\mu, \mu^{\prime}\right) \leq \epsilon$.

Sampling from discrete distributions

Problem:
Given oracle access to $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$, approximately sample:

$$
S \sim \mu: \quad \mathbb{P}[S] \propto \mu(S)
$$

ϵ-approximate sample: sample $S \sim \mu^{\prime}$ s.t. $d_{T V}\left(\mu, \mu^{\prime}\right) \leq \epsilon$.

Domain Sparsification

Reducing the task of sampling from μ on $\binom{[n]}{k}$ to sampling from a related distribution v on $\binom{T}{k}$ such that:

$$
|T| \ll n .
$$

Counting by repeated sampling

Approximate count $|\Omega|$: Compute \hat{Z} s.t. $\hat{Z} \leq \Omega \leq(1+\epsilon) \hat{Z}$

- μ is uniform over $\Omega \subseteq\binom{[n]}{k}$
- Approximate sampling from $\mu \Leftrightarrow$ Approximate counting $|\Omega|$ Jerrum-Valiant-Vazirani'86
- To count $|\Omega|$, need to produce many samples from μ. We want to reduce the amortized time-complexity per sample.

Examples

Determinantal point processes

Spanning trees / forests

k-Matchings

Determinantal Point Processes (DPPs)

Given: Matrix $L \in \mathbb{R}^{n \times n}$ $\mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)$ when $|S|=k$

Example: $S=\{1,2,4\}$

Application:

- Recommender system Gillenwater-Kulesza-Taskar'12
- Image Search Kulesza-Taskar'11
- RandNLA Dereziński-Mahonet-AMS Notices'21

When $L=L^{\top}$, can write $L=V V^{\top}$ where
$V=\left[\begin{array}{c}-v_{1}- \\ \vdots \\ -v_{n}-\end{array}\right]$, then
$\mathbb{P}[S] \propto$ Volume $^{2}($ vectors indexed by $S)$

Gartrell et al'19,20 consider nonsymmetric DPP ($L+L^{\top} \succeq 0$) for its enhanced modelling power.

Outline

(1) Background
(2) Isotropy for discrete distributions and isotropic transformation
(3) Intermediate sampling
(4) Domain sparsification: $n \rightarrow n^{1-\alpha}$ poly (k)

A brief history

$n \rightarrow \operatorname{poly}(k)$
Need: negative correlation

- Volume sampling
- (Symmetric) determinantal point processes

A brief history

$$
\underline{n} \rightarrow \operatorname{poly}(k)
$$

Need: very strong HDX

- Counting matroid bases
- Sampling from log-concave distributions

$$
n \rightarrow \operatorname{poly}(k)
$$

Need: negative correlation

- Volume sampling
- (Symmetric) determinantal point processes

A brief history

$$
n \rightarrow n^{1-\alpha} \operatorname{poly}(k)
$$

Minimal assumption: entropic independence

- Counting planar matchings
- Sampling from non-symmetric DPPs

$$
n \rightarrow \operatorname{poly}(k)
$$

Need: very strong HDX

- Counting matroid bases
- Sampling from log-concave distributions

$$
n \rightarrow \operatorname{poly}(k)
$$

Need: negative correlation

- Volume sampling
- (Symmetric) determinantal point processes

Outline

(1) Background

(2) Isotropy for discrete distributions and isotropic transformation

3 Intermediate sampling

4 Domain sparsification: $n \rightarrow n^{1-\alpha}$ poly (k)

Isotropy for discrete distributions

Definition (Anari-Derezzinski-FOCS'20)
Density $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in[n]$.

Isotropy for discrete distributions

Definition (Anari-Derezinski-FOCS'20)

Density $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in[n]$.

Transformation to isotropic position:

Isotropy for discrete distributions

Definition (Anari-Derezinski-FOCS'20)

Density $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in[n]$.

Transformation to isotropic position:

Intuition: Duplicate elements proportionally to the marginals.

Converting to isotropic position

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

Converting to isotropic position

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

- For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time

Converting to isotropic position

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

- For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time
- In general: Approximate estimate the marginals by sampling and counting/sampling equivalence Jerrum-Vazizani-Vazimaniss
- Matroid bases
- Fractionally log-concave distributions (nonsymmetric DPPs, planar matchings)

Converting to isotropic position

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

- For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time
- In general: Approximate estimate the marginals by sampling and counting/sampling equivalence Jerrum-VaziraniVVazinaiis4
- Matroid bases
- Fractionally log-concave distributions (nonsymmetric DPPs, planar matchings)
- Can speed-up estimating the marginals via an annealing process (see Anari-Dereziñski-FOCs'20)

How can we use isotropy to accelerate sampling?

Outline

(1) Background
(2) Isotropy for discrete distributions and isotropic transformation
(3) Intermediate sampling
(4) Domain sparsification: $n \rightarrow n^{1-\alpha}$ poly (k)

Simple idea: Intermediate sampling

Assumption: μ is nearly isotropic
[n]

Simple idea: Intermediate sampling

Assumption: μ is nearly isotropic
(1) Intermediate uniform sample:

$$
T \sim\binom{[n]}{t}, \quad k<t<n
$$

Simple idea: Intermediate sampling

Assumption: μ is nearly isotropic
(1) Intermediate uniform sample:

$$
T \sim\binom{[n]}{t}, \quad k<t<n
$$

(2) Downsample: $S \sim \mu_{\mid T}$

Simple idea: Intermediate sampling

Assumption: μ is nearly isotropic
(1) Intermediate uniform sample:

$$
T \sim\binom{[n]}{t}, \quad k<t<n
$$

(2) Downsample: $S \sim \mu_{\mid T}$

Domain sparsification from $[n]$ to T ?

Simple idea: Intermediate sampling

Assumption: μ is nearly isotropic
(1) Intermediate uniform sample:

$$
T \sim\binom{[n]}{t}, \quad k<t<n
$$

(2) Downsample: $S \sim \mu_{\mid T}$

Domain sparsification from $[n]$ to T ? Not quite!

Markov chain intermediate sampling

Instantly mixing walk
S_{0}

Markov chain intermediate sampling

Instantly mixing walk
$S_{0} \quad\left\langle\rho_{1}, \ldots, \rho_{t}\right\rangle$

Markov chain intermediate sampling

Instantly mixing walk

Markov chain intermediate sampling

Instantly mixing walk

Markov chain intermediate sampling

Instantly mixing walk

$\underline{\text { Hierarchical walk }}$ to address generating $S_{1} \sim \mu_{\sigma}$

Markov chain intermediate sampling

Instantly mixing walk

$\underline{\text { Hierarchical walk }}$ to address generating $S_{1} \sim \mu_{\sigma}$

Markov chain intermediate sampling

Instantly mixing walk

$\underline{\text { Hierarchical walk }}$ to address generating $S_{1} \sim \mu_{\sigma}$

Outline

(1) Background

(2) Isotropy for discrete distributions and isotropic transformation
(3) Intermediate sampling
(4) Domain sparsification: $n \rightarrow n^{1-\alpha}$ poly (k)

Example: Bipartite graph

For graph $G=G([n], E)$, consider μ uniform over $E \subseteq\binom{[n]}{2}$

Intermediate sampling

Example: Bipartite graph

For graph $G=G([n], E)$, consider μ uniform over $E \subseteq\binom{[n]}{2}$

Intermediate sampling

$$
t:=|T|=o(\sqrt{n}):
$$

$\binom{T}{k} \cap \operatorname{supp}(\mu)=\varnothing$ almost surely

Example: Bipartite graph

For graph $G=G([n], E)$, consider μ uniform over $E \subseteq\binom{[n]}{2}$

Intermediate sampling

$$
t=\sqrt{n}:
$$

$\binom{T}{k} \cap \operatorname{supp}(\mu) \neq \varnothing$ w. prob. $1 / n$

Example: Bipartite graph

For graph $G=G([n], E)$, consider μ uniform over $E \subseteq\binom{[n]}{2}$

In general: Birthday paradox for k-collisions

- Generally, for $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$, we need $t \simeq n^{1-1 / k}$ intermediate samples to find a set $S \in \operatorname{supp}(\mu)$.
Think: μ encodes a hypergraph
- When can we make $t=n^{0.9}$?

Generating polynomial

For distribution $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$, let its generating polynomial be

$$
f_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) z^{S}=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

$f_{\mu} \equiv$ extension of μ on \mathbb{R}^{n}.

Entropic independence Anaridani:Keonler-Phom-V21

Distribution $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ is (1/ $\left.\alpha\right)$-entropically-independent for $\alpha \in(0,1]$ if, let $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S] / k$:

Definition 1: Geometry of polynomial

For all $z_{i} \geq 0$

$$
f_{\mu}\left(z_{1}^{\alpha}, \cdots, z_{n}^{\alpha}\right)^{\frac{1}{\alpha k}} \leq \sum_{i=1}^{n} p_{i} z_{i}
$$

Definition 2: Entropy contraction

For all distribution $v:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$

$$
\mathcal{D}_{\mathrm{KL}}(\text { marginal of } v \mid \text { marginal of } \mu) \leq \frac{1}{\alpha k} \mathcal{D}_{\mathrm{KL}}(v \mid \mu) .
$$

Entropic independence: examples

$1 / \alpha$-entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

- Every distribution is $1 / \alpha$-entropic independence with $\alpha \geq 1 / k$ because by AM-GM

$$
f_{\mu}\left(z_{1}^{1 / k}, \cdots, z_{n}^{1 / k}\right)=\sum \mu(S)\left(\prod_{i \in S} z_{i}\right)^{1 / k} \leq \sum \mu(S) \frac{\sum_{i \in S} z_{i}}{k}
$$

Entropic independence: examples

$1 / \alpha$-entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

- Every distribution is $1 / \alpha$-entropic independence with $\alpha \geq 1 / k$ because by AM-GM

$$
f_{\mu}\left(z_{1}^{1 / k}, \cdots, z_{n}^{1 / k}\right)=\sum \mu(S)\left(\prod_{i \in S} z_{i}\right)^{1 / k} \leq \sum \mu(S) \frac{\sum_{i \in S} z_{i}}{k}
$$

- $\alpha=1$: Spanning tree/symmetric DPPs/uniform distribution over matroid bases
- $\alpha=1 / 4$: k-matchings in graph, non-symmetric DPPs

Entropic independence: examples

$1 / \alpha$-entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

- Every distribution is $1 / \alpha$-entropic independence with $\alpha \geq 1 / k$ because by AM-GM

$$
f_{\mu}\left(z_{1}^{1 / k}, \cdots, z_{n}^{1 / k}\right)=\sum \mu(S)\left(\prod_{i \in S} z_{i}\right)^{1 / k} \leq \sum \mu(S) \frac{\sum_{i \in S} z_{i}}{k}
$$

- $\alpha=1$: Spanning tree/symmetric DPPs/uniform distribution over matroid bases
- $\alpha=1 / 4$: k-matchings in graph, non-symmetric DPPs
- Isotropic transformation preserve entropic independence

Domain sparsification: A general framework

Theorem

Let $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ be (1/ $\left.\alpha\right)$-entropically independent.
Suppose that we have an algorithm \mathcal{A} that can produce approximate samples from any external field λ applied to μ in time $T(m, k)$, where m is the sparsity of λ. Then, we can:
(1) convert μ to nearly-isotropic position in time

$$
O\left(T(n, k)+n \cdot \operatorname{poly}(k, \log n) \cdot T\left(n^{1-\alpha} \operatorname{poly}(k), k\right)\right) .
$$

(2) approximately sample from a nearly-isotropic μ in time

$$
O\left(T\left(n^{1-\alpha} \operatorname{poly}(k), k\right)\right) .
$$

Application

- Approximate counting size- k matchings in planar graph in time $O\left(\right.$ poly $\left.(k) n^{2}+\operatorname{poly}(k) n^{3 / 2} \epsilon^{-2}\right)$
i.e. output \hat{Z} s.t. $\hat{Z} \leq \#$ matching $\leq(1+\epsilon) \hat{Z}$
- After $\tilde{O}\left(n k^{2}+k^{3}\right)$ pre-processing, producing sample from
- Nonsymmetric k-DPP: $\tilde{O}\left(\operatorname{poly}(k) n^{3 / 2}\right)$ time.

For rank-d kernel: $\tilde{O}\left(\operatorname{poly}(k) n^{3 / 4} d^{2}\right)$-time

- Symmetric k-DPP: $\tilde{O}(\operatorname{poly}(k))$ time.

Anari-Liu-V'21 (subsequent woork): $\tilde{O}\left(k^{\omega}\right)$ per sample w/ $\tilde{O}\left(n k^{\omega-1}\right)$ preprocessing.

- For any distribution: after pre-processing, reducing domain size from n to $n^{1-1 / k}$.
This matches birthday-paradox threshold.

Domain size is tight!

Can "higher-order marginals" $\mathbb{P}_{S \sim \mu}[I \subseteq S]$ help?

Theorem

For any $\alpha \in(0,1]$ and large enough n, k, there is a distribution $\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geq 0}$ such that:
(1) μ satisfies $(1 / \alpha)$-entropic independence; and
(2) any domain sparsification scheme to sample from μ requires $t=\tilde{\Omega}\left(n^{1-\alpha}\right)$, even when given higher-order marginals.

High level proof idea

Intermediate sampling Markov chain: $S_{0} \rightarrow S_{1} \rightarrow \cdots \rightarrow \mu$

- Prove intermediate sampling Markov chain has instant-mixing: $\mathbb{P}\left[S_{1}\right] \geq \mu(S)(1-0.1)$.
- Lower bound $\frac{\mathbb{P}\left[S_{1}\right]}{\mu(S)}$ by $(\underbrace{\mathbb{E}_{T^{\prime} \sim\binom{n n] \text { 足 }}{t-2 k}}\left[\sum_{S^{\prime} \subset\left(T^{\prime} \cup R\right)} \mu\left(S^{\prime}\right)\right]}_{(*)})^{-1}$,
with $R=S \cup S_{0}$.
Rewrite

$$
\begin{aligned}
(*) & =(t / n)^{k} f_{\mu}(\cdots, \underbrace{(n / t)}_{i \in R}, \cdots, \underbrace{1}_{i \notin R}) \\
& \prec(t / n)^{k} \exp (\alpha k \sum_{i \in\left(S_{0} \cup S\right)} \underbrace{p_{i}}_{\frac{1}{n}}(n / t)^{1 / \alpha}) .
\end{aligned}
$$

Conclusions

- Domain sparsification: A general paradigm for reducing the complexity of (repeated) sampling
- Enables high-precision counting for many problems, e.g., counting k-matching in planar graph, size k forests etc.
- Our work generalizes Anari-Dereziński-FOCs'20's domain sparsification framework.

Open problem

Reduce domain size to poly (k) given higher-order marginals, when μ is α-fractionally log-concave

- α-FLC is strictly stronger assumption than α-entropic independence
- Another way to generalize Anari-Derezínski-FOCS'20
- Applications: for nonsymmetric DPPs, partition constraint DPP, k-matchings.

References I

Thank you!

