Domain Sparsification of Discrete

Distributions using Entropic Independence

Nima Anari Michal Derezifiski ~ Thuy-Duong Vuong  Elizabeth Yang
ITCS 2022

November 19, 2022

1/29



Given py,---,pn > 0.
Draw element from {1, - - ,n} with P[drawing i] « p;.

np.random.choice(n, weight, cumulative-weight*, num-sample*)
N ——

[preopn] (P12 prttpl

III

i= 2 3 4

2/29



Given py,- -+ ,pn > 0.
Draw element from {1, - - ,n} with P[drawing i] o« p;.

np.random.choice(n, weight, cumulative-weight*, num-sample®)
N———

[prpnl [p1p1tP2, 1Pl

With cumulative-weight, can reduce runtime from 6(n) to 6(logn).
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Given pq1,---,pn > 0.
Draw element from {1, -- ,n} with P[drawing i] & p;.

np.random.choice(n, weight, cumulative-weight*, num-sample®)
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With cumulative-weight, can reduce runtime from 6(n) to 6(logn).

Can we do the same for y with sup(y) = n<(1)?
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Sampling from discrete distributions

Problem:

Given oracle access to y : ([';]) — R>0, approximately sample:
S~u: P[S] o u(S).

e-approximate sample: sample S ~ u’ s.t. dry(u, p') <e.
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Sampling from discrete distributions

Problem:
Given oracle access to y : ([';]) — R>0, approximately sample:

S~u: P[S] o u(S).

e-approximate sample: sample S ~ u’ s.t. dry(u, p') <e.

Domain Sparsification

Reducing the task of sampling from y on ([Z]) to sampling from a
related distribution v on (}) such that:

IT| < n.
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Counting by repeated sampling

Approximate count |Q| : Compute Zs.t. Z< Q< (1+¢€)Z
@ 1 is uniform over Q C ([’]Z])

e Approximate sampling from y < Approximate counting |Q)|

Jerrum-Valiant-Vazirani’86

e To count |Q)], need to produce many samples from y. We want
to reduce the amortized time-complexity per sample.
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Examples

Determinantal point processes Spanning trees / forests
mes |\ ¥ =

k-Matchings
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Determinantal Point Processes (DPPs)

Given: Matrix L c RPxn When L = LT, can write L = VVT where
o
P[S] o det(Ls) when |S| =k v=| : |, then
—v,—
Example: § = {1,2,4} IP[S] & Volume? (vectors indexed by S)
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Application:

Gartrell et al’19,20 consider nonsymmetric DPP
@ Recommender system Gillenwater-Kulesza-Taskar'12 (L+ LT & 0) for its enhanced modelling power.
@ Image Search Kulesza-Taskar'11

@ RandNLA Dereziriski-Mahonet-AMS Notices'21
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@ Background
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A brief history

n — poly(k)
Need: negative correlation @ Volume sampling

@ (Symmetric) determinantal point
processes

Dutfee-Peebles-Peng-Rao’17; Dereziriski [COLT 2019]; Calandriello- Derezitiski-Valko
[NeurIPS 2019, 2020]
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A brief history

n — poly(k)
Need: very strong HDX @ Counting matroid bases
@ Sampling from log-concave
distributions
n — poly(k)
Need: negative correlation @ Volume sampling

@ (Symmetric) determinantal point
processes

Anari-Dereziniski [FOCS 2020]
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A brief history

n — n'~*poly (k)

Minimal assumption: entropic independence . .
@ Counting planar matchings

@ Sampling from non-symmetric DPPs

n — poly(k)
Need: very strong HDX @ Counting matroid bases
@ Sampling from log-concave
distributions
n — poly(k)
Need: negative correlation @ Volume sampling

@ (Symmetric) determinantal point
processes

Anari-Dereziriski-V-Yang [arXiv 2021]
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© Isotropy for discrete distributions and isotropic transformation
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Isotropy for discrete distributions

Definition (Anari-Dereziniski-FOCS'20)

Density p : ([Z]) — Rx is (nearly) isotropic if Ps..,[i € S] are
(nearly) the same for all i € [n].

10/29



Isotropy for discrete distributions

Definition (Anari-Dereziniski-FOCS'20)

Density p : ([ h > R> is (nearly) isotropic if Ps.,[i € S] are
(nearly) the same for all i € [n].

Transformation to isotropic position:
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Isotropy for discrete distributions

Definition (Anari-Dereziniski-FOCS'20)

Density p : ([Z]) — Rx is (nearly) isotropic if Ps..,[i € S] are
(nearly) the same for all i € [n].

Transformation to isotropic position:
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Intuition: Duplicate elements proportionally to the marginals.
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Converting to isotropic position

Goal: Efficiently estimate all marginals Ps,[i € S]
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@ For DPPs: Marginals (leverage score/effective resistant) are
computable in polynomial time

11/29



Converting to isotropic position

Goal: Efficiently estimate all marginals Ps..,,[i € S]

@ For DPPs: Marginals (leverage score/effective resistant) are
computable in polynomial time

@ In general: Approximate estimate the marginals by sampling
and counting/sampling equivalence jemmum-vaziani-vazisanisa
e Matroid bases
o Fractionally log-concave distributions (nonsymmetric DPPs,
planar matchings)
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Converting to isotropic position

Goal: Efficiently estimate all marginals Ps..,,[i € S]

@ For DPPs: Marginals (leverage score/effective resistant) are
computable in polynomial time

@ In general: Approximate estimate the marginals by sampling
and counting/sampling equivalence jemmum-vaziani-vazisanisa
e Matroid bases
o Fractionally log-concave distributions (nonsymmetric DPPs,
planar matchings)

@ Can speed-up estimating the marginals via an annealing process
(see Anari-Dereziriski-FOCS'20)
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How can we use isotropy to accelerate sampling?
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© Intermediate sampling
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Simple idea: Intermediate sampling

Assumption:  u is nearly isotropic
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Q@ Intermediate uniform sample: [n]

T~<[IZ]>, k<t<n
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Simple idea: Intermediate sampling

Assumption:  u is nearly isotropic

Q@ Intermediate uniform sample: [n]
re (), k<icn

@ Downsample: S ~ pr

Domain sparsification from [n] to T?  Not quite!
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Markov chain intermediate sampling

Instantly mixing walk

(]
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Markov chain intermediate sampling

Instantly mixing walk

1]
So (01, s 01)

NS

(01, s Oty ey O k)

15/29



Markov chain intermediate sampling

Instantly mixing walk
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Markov chain intermediate sampling

Instantly mixing walk

[n]
So (01, - Pt)

% 15
(01, s Oty ey O k)

l

Sl"“ﬂa

Hierarchical walk to address generating S ~

So S1 Sy

\ /N /

local down-up walk — SO,O — e — SO,S 51,0 e Sl,s

15/29



@ Domain sparsification: n — n'~*poly (k)
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Example: Bipartite graph

k=2
For graph G = G([n], E), consider u o o
uniform over E C ([g])
o O
Intermediate sampling o o
[]
o O
o O
n
o O
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o O
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o O
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Example: Bipartite graph

k=2

For graph G = G([n], E), consider u o o

uniform over E C ([g])
° o
Intermediate sampling o o

[]
o [ ]
° o
n
° o
o O
i |T] = o(Vi):
T o O
< > Nsupp(p) = @ almost surely

k O o]
o O
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Example: Bipartite graph

k=2

o O

For graph G = G([n], E), consider u
uniform over E C ([g}) ° o
Intermediate sampling © ©
[1] ° °
° o

n
° o
o [ ]
t=/n:
o O
T

)0 supp(u) # @ w. prob. 1/n ° o
o [ ]
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Example: Bipartite graph

For graph G = G([n], E), consider u
uniform over E C ([g]) o °

Intermediate sampling

[n] ) o
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In general: Birthday paradox for k-collisions

1-1/k intermediate

e Generally, for u : ([’;]) — R>o, weneed t ~ n
samples to find a set S € supp(y).
Think: u encodes a hypergraph

@ When can we make ¢ = n%9?
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Generating polynomial

For distribution y : ([ ]) — R>, let its generating polynomial be

fulzr, 02 ZV z :ZS:V(S)HZi

ieS

fu = extension of y on R".
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EntropiC il’ldep endel’lce Anari-Jain-Koehler-Pham-V'21

Distribution y : ([Z]) — R>g is (1/a)-entropically-independent for
VS (0, 1] if, let pi = ]PSN}t [l € S]/k

Definition 1: Geometry of polynomial
Forall z; > 0

Definition 2: Entropy contraction

For all distribution v : ([Z]) — R>p

Dy (marginal of v | marginal of ) < %DKL(V | u).
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Entropic independence: examples

1/a-entropic independence with higher a <+ stronger assumption

@ Every distribution is 1/a-entropic independence with « > 1/k
because by AM-GM

a2, 2%y = Y () ([T20)* < Y- u(S) Zzeszz

ieS
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Entropic independence: examples

1/a-entropic independence with higher a <+ stronger assumption

@ Every distribution is 1/a-entropic independence with « > 1/k
because by AM-GM

a2, 2%y = Y () ([T20)* < Y- u(S) Zzeszz
ieS

@ a = 1: Spanning tree/symmetric DPPs/uniform distribution
over matroid bases

@ a = 1/4: k-matchings in graph, non-symmetric DPPs
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Entropic independence: examples

1/a-entropic independence with higher a <+ stronger assumption

@ Every distribution is 1/a-entropic independence with « > 1/k
because by AM-GM

a2, 2%y = Y () ([T20)* < Y- u(S) Zzeszz

ieS

@ a = 1: Spanning tree/symmetric DPPs/uniform distribution
over matroid bases
@ a = 1/4: k-matchings in graph, non-symmetric DPPs

@ Isotropic transformation preserve entropic independence
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Domain sparsification: A general framework

Theorem

Let y : ([Z]) — R>q be (1/a)-entropically independent.

Suppose that we have an algorithm A that can produce approximate
samples from any external field A applied to y in time T (m, k), where m is
the sparsity of A. Then, we can:

@ convert y to nearly-isotropic position in time
O(T(n,k) + n - poly(k, logn) - T(nlf”‘poly(k),k)).

@ approximately sample from a nearly-isotropic y in time

O(T(nl_"‘poly(k),k)).
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Application

@ Approximate counting size-k matchings in planar graph in time
O(poly(k)n* 4 poly(k)n*/2e2)
ie. output Z s.t. Z < #matching < (1+¢€)Z
o After O(nk? + k3) pre-processing, producing sample from
o Nonsymmetric k-DPP: O(poly(k)n3/2) time.
For rank-d kernel: O(poly(k)n3/4d?)-time
o Symmetric k-DPP: O(poly(k)) time.
Anari-Liu-V'21 (subsequent work): G(kw) per sample w/ O(nkw_l)
preprocessing.
e For any distribution: after pre-processing, reducing domain size
from n to n'~1/k,
This matches birthday-paradox threshold.
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Domain size is tight!

Can “higher-order marginals” P, [I C S] help?

Theorem

For any « € (0,1] and large enough n, k, there is a distribution
e (['Z]) — R such that:

@ i satisfies (1/w)-entropic independence; and

@ any domain sparsification scheme to sample from y requires
t = Q(n'=%), even when given higher-order marginals.
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High level proof idea

]

©r&®

Intermediate sampling Markov chain: S = S — -+ = u

@ Prove intermediate sampling Markov chain has instant-mixing:
P[$:1] = u(S)(1 —0.1).

e Lower bound ]P[(Sl)] by (. o \R)[ Y. ou(sHHT
t—2k S’C(T’UR)

()
with R = SU Sy.

Rewrite

()= (/) fulc o, (/)0 L)
i€R iR
(t/n) explak Y pi (n/t)"%).

ie(SpuS)

ﬁ
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Conclusions

@ Domain sparsification: A general paradigm for reducing the
complexity of (repeated) sampling

@ Enables high-precision counting for many problems,
e.g., counting k-matching in planar graph, size k forests etc.

@ Our work generalizes Anari-Dereziniski-FOCS'20’s domain sparsification
framework.
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Open problem

Reduce domain size to poly(k) given higher-order marginals, when y
is a-fractionally log-concave

o «a-FLC is strictly stronger assumption than a-entropic
independence

o Another way to generalize Anari-Derezinski-FOCS'20

@ Applications: for nonsymmetric DPPs, partition constraint DPP,
k-matchings.
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Thank you!
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