Domain Sparsification of Discrete Distributions using Entropic Independence

Nima Anari Michal Dereziński Thuy-Duong Vuong Elizabeth Yang

ITCS 2022

November 19, 2022

Given $p_1, \dots, p_n \ge 0$. Draw element from $\{1, \dots, n\}$ with $\mathbb{P}[\text{drawing } i] \propto p_i$.

np.random.choice(n, weight, cumulative-weight*, num-sample*) $[p_1, \dots, p_n]$ $[p_1, p_1 + p_2, \dots, p_1 + \dots + p_n]$

Given $p_1, \dots, p_n \ge 0$. Draw element from $\{1, \dots, n\}$ with $\mathbb{P}[\text{drawing } i] \propto p_i$.

Given $p_1, \dots, p_n \ge 0$. Draw element from $\{1, \dots, n\}$ with $\mathbb{P}[\text{drawing } i] \propto p_i$.

np.random.choice(*n*, weight, cumulative-weight^{*}, num-sample^{*}) $\underbrace{[p_1, \cdots, p_n]}_{[p_1, p_1 + p_2, \cdots, p_1 + \cdots + p_n]}$ With cumulative-weight, can reduce runtime from $\theta(n)$ to $\theta(\log n)$. Can we do the same for μ with $\sup(\mu) = n^{\omega(1)}$?

Sampling from discrete distributions

Problem:

Given oracle access to $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, approximately sample:

 $S \sim \mu$: $\mathbb{P}[S] \propto \mu(S)$.

 ϵ -approximate sample: sample $S \sim \mu'$ s.t. $d_{TV}(\mu, \mu') \leq \epsilon$.

Sampling from discrete distributions

Problem:

Given oracle access to $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, approximately sample:

$$S\sim \mu:\qquad \mathbb{P}[S]\propto \mu(S).$$

 ϵ -approximate sample: sample $S \sim \mu'$ s.t. $d_{TV}(\mu, \mu') \leq \epsilon$.

Domain Sparsification

Reducing the task of sampling from μ on $\binom{[n]}{k}$ to sampling from a related distribution ν on $\binom{T}{k}$ such that:

$$|T| \ll n.$$

Approximate count $|\Omega|$: Compute \hat{Z} s.t. $\hat{Z} \leq \Omega \leq (1 + \epsilon)\hat{Z}$

- μ is uniform over $\Omega \subseteq {[n] \choose k}$
- Approximate sampling from $\mu \Leftrightarrow$ Approximate counting $|\Omega|$ *Jerrum-Valiant-Vazirani'86*
- To count |Ω|, need to produce many samples from μ. We want to reduce the amortized time-complexity per sample.

Examples

Determinantal point processes

Spanning trees / forests

k-Matchings

Determinantal Point Processes (DPPs)

Given: Matrix $L \in \mathbb{R}^{n \times n}$

$$\mathbb{P}[S] \propto \det(L_S)$$
 when $|S| = k$

Application:

- Recommender system Gillenwater-Kulesza-Taskar'12
- Image Search Kulesza-Taskar'11
- RandNLA Dereziński-Mahonet–AMS Notices'21

When
$$L = L^{\mathsf{T}}$$
, can write $L = VV^{\mathsf{T}}$ where
 $V = \begin{bmatrix} -v_1 - \\ \vdots \\ -v_n - \end{bmatrix}$, then
 $\mathbb{P}[S] \propto \text{Volume}^2(\text{vectors indexed by } S)$

Gartrell et al'19,20 consider nonsymmetric DPP $(L + L^{\intercal} \succeq 0)$ for its enhanced modelling power.

2 Isotropy for discrete distributions and isotropic transformation

Intermediate sampling

Domain sparsification: $n \to n^{1-\alpha}$ poly(k)

Durfee-Peebles-Peng-Rao'17; Dereziński [COLT 2019]; Calandriello- Dereziński-Valko [NeurIPS 2019, 2020]

Anari-Dereziński [FOCS 2020]

A brief history

Anari-Dereziński-V-Yang [arXiv 2021]

2 Isotropy for discrete distributions and isotropic transformation

Intermediate sampling

Domain sparsification: $n \to n^{1-\alpha} poly(k)$

Isotropy for discrete distributions

Definition (Anari-Dereziński–FOCS'20)

Density $\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in [n]$.

Isotropy for discrete distributions

Definition (Anari-Dereziński–FOCS'20)

Density $\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in [n]$.

Transformation to isotropic position:

Isotropy for discrete distributions

Definition (Anari-Dereziński–FOCS'20)

Density $\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$ is (nearly) isotropic if $\mathbb{P}_{S \sim \mu}[i \in S]$ are (nearly) the same for all $i \in [n]$.

Transformation to isotropic position:

Intuition: Duplicate elements proportionally to the marginals.

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

• For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

- For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time
- In general: Approximate estimate the marginals by sampling and counting/sampling equivalence Jerrum-Vazirani-Vazirani'84
 - Matroid bases
 - Fractionally log-concave distributions (nonsymmetric DPPs, planar matchings)

Goal: Efficiently estimate all marginals $\mathbb{P}_{S \sim \mu}[i \in S]$

- For DPPs: Marginals (leverage score/effective resistant) are computable in polynomial time
- In general: Approximate estimate the marginals by sampling and counting/sampling equivalence Jerrum-Vazirani-Vazirani'84
 - Matroid bases
 - Fractionally log-concave distributions (nonsymmetric DPPs, planar matchings)
- Can speed-up estimating the marginals via an annealing process (see *Anari-Dereziński–FOCS'20*)

How can we use isotropy to accelerate sampling?

2 Isotropy for discrete distributions and isotropic transformation

Intermediate sampling

Domain sparsification: $n \to n^{1-\alpha} poly(k)$

Assumption: μ is nearly isotropic

Assumption: μ is nearly isotropic

Intermediate uniform sample:

$$T \sim \binom{[n]}{t}, \qquad k < t < n$$

Assumption: μ is nearly isotropic

Intermediate uniform sample:

$$T \sim \binom{[n]}{t}, \qquad k < t < n$$

2 Downsample: $S \sim \mu_{|T|}$

Assumption: μ is nearly isotropic

Intermediate uniform sample:

$$T \sim \binom{[n]}{t}, \qquad k < t < n$$

2 Downsample: $S \sim \mu_{|T|}$

Domain sparsification from [n] to T?

Assumption: μ is nearly isotropic

Intermediate uniform sample:

$$T \sim \binom{[n]}{t}, \qquad k < t < n$$

2 Downsample: $S \sim \mu_{|T|}$

Domain sparsification from [*n*] *to T*? **Not quite**!

Instantly mixing walk

 S_0

Instantly mixing walk

 $S_0 \qquad \langle \rho_1, ..., \rho_t \rangle$

Instantly mixing walk

Hierarchical walk to address generating $S_1 \sim \mu_{\sigma}$

Hierarchical walk to address generating $S_1 \sim \mu_{\sigma}$

Hierarchical walk to address generating $S_1 \sim \mu_{\sigma}$

Alimohammadi-Anari-Shiragur-V-STOC'21

Background

2 Isotropy for discrete distributions and isotropic transformation

Intermediate sampling

For graph G = G([n], E), consider μ uniform over $E \subseteq {[n] \choose 2}$

For graph G = G([n], E), consider μ uniform over $E \subseteq {[n] \choose 2}$

$$t := |T| = o(\sqrt{n}):$$

$$\binom{T}{k} \cap \operatorname{supp}(\mu) = \emptyset$$
 almost surely

For graph G = G([n], E), consider μ uniform over $E \subseteq {[n] \choose 2}$

$$t = \sqrt{n}$$
:

$$\binom{T}{k} \cap \operatorname{supp}(\mu) \neq \emptyset$$
 w. prob. $1/n$

For graph G = G([n], E), consider μ uniform over $E \subseteq {\binom{[n]}{2}}$

In general: Birthday paradox for *k*-collisions

- Generally, for μ : (^[n]_k) → ℝ_{≥0}, we need t ≃ n^{1-1/k} intermediate samples to find a set S ∈ supp(μ). Think: μ encodes a hypergraph
- When can we make $t = n^{0.9}$?

For distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$, let its **generating polynomial** be

$$f_{\mu}(z_1,\ldots,z_n) = \sum_{S} \mu(S) z^{S} = \sum_{S} \mu(S) \prod_{i \in S} z_i$$

 $f_{\mu} \equiv$ extension of μ on \mathbb{R}^{n} .

Entropic independence Anari-Jain-Koehler-Pham-V'21

Distribution $\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$ is $(1/\alpha)$ -entropically-independent for $\alpha \in (0,1]$ if, let $p_i = \mathbb{P}_{S \sim \mu}[i \in S]/k$:

Definition 1: Geometry of polynomial

For all $z_i \geq 0$

$$f_{\mu}(z_1^{\alpha},\cdots,z_n^{\alpha})^{\frac{1}{\alpha k}} \leq \sum_{i=1}^n p_i z_i$$

Definition 2: Entropy contraction

For all distribution $\nu : \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$

$$\mathcal{D}_{\mathrm{KL}}(\text{marginal of } \nu \mid \text{marginal of } \mu) \leq \frac{1}{\alpha k} \mathcal{D}_{\mathrm{KL}}(\nu \mid \mu).$$

Entropic independence: examples

 $1/\alpha$ -entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

 Every distribution is 1/α-entropic independence with α ≥ 1/k because by AM-GM

$$f_{\mu}(z_{1}^{1/k}, \cdots, z_{n}^{1/k}) = \sum \mu(S) (\prod_{i \in S} z_{i})^{1/k} \leq \sum \mu(S) \frac{\sum_{i \in S} z_{i}}{k}$$

Entropic independence: examples

 $1/\alpha$ -entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

 Every distribution is 1/α-entropic independence with α ≥ 1/k because by AM-GM

$$f_{\mu}(z_1^{1/k}, \cdots, z_n^{1/k}) = \sum \mu(S) (\prod_{i \in S} z_i)^{1/k} \le \sum \mu(S) \frac{\sum_{i \in S} z_i}{k}$$

- *α* = 1: Spanning tree/symmetric DPPs/uniform distribution over matroid bases
- $\alpha = 1/4$: *k*-matchings in graph, non-symmetric DPPs

Entropic independence: examples

 $1/\alpha$ -entropic independence with higher $\alpha \leftrightarrow$ stronger assumption

 Every distribution is 1/α-entropic independence with α ≥ 1/k because by AM-GM

$$f_{\mu}(z_1^{1/k}, \cdots, z_n^{1/k}) = \sum \mu(S) (\prod_{i \in S} z_i)^{1/k} \le \sum \mu(S) \frac{\sum_{i \in S} z_i}{k}$$

- *α* = 1: Spanning tree/symmetric DPPs/uniform distribution over matroid bases
- $\alpha = 1/4$: *k*-matchings in graph, non-symmetric DPPs
- Isotropic transformation preserve entropic independence

Domain sparsification: A general framework

Theorem

Let
$$\mu : {\binom{[n]}{k}} \to \mathbb{R}_{\geq 0}$$
 be $(1/\alpha)$ -entropically independent.

Suppose that we have an algorithm A that can produce approximate samples from any external field λ applied to μ in time T(m,k), where m is the sparsity of λ . Then, we can:

Ο *convert μ to nearly-isotropic position in time*

$$O\Big(T(n,k) + n \cdot \operatorname{poly}(k, \log n) \cdot T(n^{1-\alpha} \operatorname{poly}(k), k)\Big).$$

α approximately sample from a nearly-isotropic μ in time

$$O\Big(T(n^{1-\alpha}\mathsf{poly}(k),k)\Big).$$

Application

- Approximate counting size-k matchings in planar graph in time O(poly(k)n² + poly(k)n^{3/2}ε⁻²)
 i.e. output Î s.t. Î ≤ #matching ≤ (1 + ε)Î
- After $\tilde{O}(nk^2 + k^3)$ pre-processing, producing sample from
 - Nonsymmetric k-DPP: Õ(poly(k)n^{3/2}) time. For rank-d kernel: Õ(poly(k)n^{3/4}d²)-time
 - Symmetric k-DPP: Õ(poly(k)) time.
 Anari-Liu-V'21 (subsequent work): Õ(k^ω) per sample w / Õ(nk^{ω-1}) preprocessing.
- For any distribution: after pre-processing, reducing domain size from *n* to $n^{1-1/k}$.

This matches birthday-paradox threshold.

Can "higher-order marginals" $\mathbb{P}_{S \sim \mu}[I \subseteq S]$ *help?*

Theorem

For any $\alpha \in (0,1]$ and large enough n, k, there is a distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geq 0}$ such that:

- μ satisfies $(1/\alpha)$ -entropic independence; and
- **2** any domain sparsification scheme to sample from μ requires $t = \tilde{\Omega}(n^{1-\alpha})$, even when given higher-order marginals.

High level proof idea

Intermediate sampling Markov chain: $S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow \mu$

- Prove intermediate sampling Markov chain has instant-mixing: $\mathbb{P}[S_1] \ge \mu(S)(1-0.1).$
- Lower bound $\frac{\mathbb{P}[S_1]}{\mu(S)}$ by $(\underbrace{\mathbb{E}_{T' \sim \binom{[n] \setminus R}{t-2k}}[\sum_{S' \subset (T' \cup R)} \mu(S')]}_{(*)})^{-1}$,

with $R = S \cup S_0$. Rewrite

$$\begin{aligned} f(*) &= (t/n)^k f_{\mu}(\cdots,\underbrace{(n/t)}_{i\in R},\cdots,\underbrace{1}_{i\notin R}) \\ &\stackrel{\prec}{\underset{EI}{\leftarrow}} (t/n)^k \exp(\alpha k \sum_{i\in (S_0\cup S)} \underbrace{p_i}_{\frac{1}{n}} (n/t)^{1/\alpha}). \end{aligned}$$

- <u>Domain sparsification</u>: A general paradigm for reducing the complexity of (repeated) sampling
- Enables high-precision counting for many problems, e.g., counting *k*-matching in planar graph, size *k* forests etc.
- Our work generalizes *Anari-Dereziński–FOCS'20's* domain sparsification framework.

Reduce domain size to $\mathsf{poly}(k)$ given higher-order marginals, when μ is α -fractionally log-concave

- *α*-FLC is strictly stronger assumption than *α*-entropic independence
- Another way to generalize Anari-Dereziński-FOCS'20
- Applications: for nonsymmetric DPPs, partition constraint DPP, *k*-matchings.

References I

Thank you!