
Fast parallel sampling under isoperimetry

Thuy-Duong “June” Vuong
Stanford → Miller Institute

Nima Anari
Stanford University

Sinho Chewi
Yale University

COLT 2024
Edmonton, Canada

Sampling

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Output: random 𝑥 ∼ ො𝜋 s.t. ො𝜋 ≈ 𝜋

• Fundamental task in statistics
• Many applications:

o Generative AI
o Inference
o …

Sampling

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

Guarantee

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Output: random 𝑥 ∼ ො𝜋 s.t. ො𝜋 ≈ 𝜋

Measures of distance between distributions:

• KL (Kullback-Leibler): ො𝜋 ≈𝐾𝐿 𝜋

• Total variation: ො𝜋 ≈𝑇𝑉 𝜋

• 𝒲2 (Wasserstein): ො𝜋 ≈𝒲2
𝜋

𝒟𝐾𝐿 𝜌, 𝜋 = 𝔼𝜌[log
𝜌

𝜋
]

𝒟𝑇𝑉 𝜌, 𝜋 = 𝔼𝜌[1 − 𝜋/𝜌]

𝒲2 𝜌, 𝜋 = 𝔼 𝑋,𝑌 ∼Π[𝑋 − 𝑌
2

]

Measures of distance between distributions

• KL (Kullback-Leibler): ො𝜋 ≈𝐾𝐿 𝜋

• Total variation: ො𝜋 ≈𝑇𝑉 𝜋

• 𝒲2 (Wasserstein): ො𝜋 ≈𝒲2
𝜋

𝒟𝐾𝐿 𝜌, 𝜋 = 𝔼𝜌[log
𝜌

𝜋
]

𝒟𝑇𝑉 𝜌, 𝜋 = 𝔼𝜌[1 − 𝜋/𝜌]

𝒲2 𝜌, 𝜋 = 𝔼 𝑋,𝑌 ∼Π[𝑋 − 𝑌
2

]

Fact 0: 𝒟𝑇𝑉
2 ≤ 𝒟𝐾𝐿

Fact 1: When 𝜋 satisfies LSI, 𝒲2
2 ≤ 𝒟𝐾𝐿

Poly(𝑑) processors

Polylog(𝑑)
depth

…
.

…
. Poly (𝑑)

depth
Parallelization

Parallel computing

• The dimension 𝑑 is large in modern big-data applications

• Modern GPUs are highly parallelizable

• Improve runtime via parallelization?

Our result: fast parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

Results:

Guarantee Parallel depth Total work
#(processors+oracle calls)

Algorithm

KL 𝑂(log2 𝑑) ෨𝑂(𝑑) Parallel-LMC

Fact 0: 𝒟𝑇𝑉
2 ≤ 𝒟𝐾𝐿

Fact 1: When 𝜋 satisfies LSI, 𝒲2
2 ≤ 𝒟𝐾𝐿

Our result: fast parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

Results:

Guarantee Parallel depth Total work
#(processors+oracle calls)

Algorithm

KL 𝑂(log2 𝑑) ෨𝑂(𝑑) Parallel-LMC

TV 𝑂(log2 𝑑) ෨𝑂(𝑑) Parallel -ULMC

Prior works on parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

• Strong log-concavity: ∇2𝑉 ≽ 𝛼𝐼 ≻ 0

Implies
LSI

Guarantee Parallel depth Total work Algorithm Authors

𝒲2 𝑂(log𝑂(1) 𝑑) ෨𝑂(𝑑) Randomized midpoint [Shen-Lee’19]

Prior works on parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

• Strong log-concavity: ∇2𝑉 ≽ 𝛼𝐼 ≻ 0

Implies
LSI

Guarantee Parallel depth Total work Algorithm Authors

KL 𝑂(log2 𝑑) ෨𝑂(𝑑) Parallel-LMC This work

TV 𝑂(log2 𝑑) ෨𝑂(𝑑) Parallel -ULMC This work

𝒲2 𝑂(log𝑂(1) 𝑑) ෨𝑂(𝑑) Randomized midpoint [Shen-Lee’19]

Prior works on parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

• Strong log-concavity: ∇2𝑉 ≽ 𝛼𝐼 ≻ 0

Implies
LSI

Guarantee Parallel depth Total work Algorithm Authors

KL Parallel-LMC This work

TV Parallel -ULMC This work

𝒲2 Randomized midpoint [Shen-Lee’19]

Prior works on parallel sampler

Input: Distribution 𝜋 = exp(−𝑉 ⋅) over ℝ𝑑 , oracle access to ∇V

Assumptions:

• Smooth potential: ||∇2𝑉||𝑂𝑃 ≤ 𝛽

• Isoperimetry: 𝜋 satisfies log-Sobolev inequality (LSI)

• Strong log-concavity: ∇2𝑉 ≽ 𝛼𝐼 ≻ 0c

Implies
LSI

Guarantee Parallel depth Total work Algorithm Authors

KL Parallel-LMC This work

TV Parallel -ULMC This work

𝒲2 Randomized midpoint [Shen-Lee’19]

Application in discrete sampling

Input: Distribution 𝜇 over ±1 𝑑 ⊆ ℝ𝑑 , oracle access to 𝜇

Output: random 𝑥 ∼ ො𝜋 s.t. ො𝜋 ≈𝑇𝑉 𝜋

• [AHLXVY-STOC23] reduces “nice” discrete 𝜇 to continuous smooth
strongly log-concave 𝜋

• ≈𝑇𝑉 for continuous −→ ≈𝑇𝑉 for discrete
• ≈𝒲2

 for continuous −→ ≈𝑇𝑉 for discrete, except for restricted cases

Algorithm

Fast parallel way to discretize continuous diffusions:

• Langevin diffusions

• Underdamped Langevin diffusions

• DDPM…

Continuous time diffusions

𝑑𝑋𝑡 = −∇ 𝑉 Xt dt + 2𝑑𝐵𝑡Langevin diffusion:

Drift Brownian
motion

Gradient descent: 𝑑𝑋𝑡 = −∇ 𝑉 Xt dt

Drift

Continuous time diffusions

𝑑𝑋𝑡 = −∇ 𝑉 Xt dt + 2𝑑𝐵𝑡Langevin diffusion:

Drift Brownian
motion

𝐿𝑎𝑤 𝑋𝑡 ≈𝐾𝐿 𝜋 if 𝑡 ≥ log 𝑑

But, we can’t implement the continuous time process

Discretization

𝑑𝑋𝑡 = −∇ 𝑉 Xt dt + 2𝑑𝐵𝑡Langevin diffusion:

Drift Brownian
motion

Langevin Monte-Carlo:
(LMC)

𝑑 ෨𝑋𝑡 = −∇ 𝑉 ෨𝑋 t
h

ℎ
dt + 2𝑑𝐵𝑡 ෨𝑋0

෨𝑋ℎ
෨𝑋 𝑁ℎ

෨𝑋(𝑛+1)ℎ − ෨𝑋𝑛ℎ = −∇ 𝑉 ෨𝑋𝑛ℎ h + 2(B 𝑛+1 ℎ − 𝐵ℎ)

𝐿𝑎𝑤 ෨𝑋𝑇

Discretization

𝑑𝑋𝑡 = −∇ 𝑉 Xt dt + 2𝑑𝐵𝑡Langevin diffusion:

Drift Brownian
motion

Langevin Monte-Carlo:
(LMC)

𝑑 ෨𝑋𝑡 = −∇ 𝑉 ෨𝑋 t
h

ℎ
dt + 2𝑑𝐵𝑡

𝐿𝑎𝑤 ෨𝑋𝑇 ≈𝐾𝐿 𝐿𝑎𝑤 𝑋𝑇 ≈𝐾𝐿 𝜋 if T≥ log 𝑑 and ℎ ≤
1

𝑑
⇒ N =

T

h
= ෩Ω(𝑑)

𝐿𝑎𝑤 𝑋𝑇 ≈𝐾𝐿 𝜋 if T≥ log 𝑑

෨𝑋0
෨𝑋ℎ

෨𝑋 𝑁ℎ

Discretization—in parallel

LMC:

Parallel-LMC:

𝑑 ෠𝑋𝑡
(𝑟)

= −∇ 𝑉 ෠𝑋 t
h

ℎ

(𝑟−1)
dt + 2𝑑𝐵𝑡

෨𝑋0
෨𝑋ℎ

෨𝑋 𝑁ℎ
𝑑 ෨𝑋𝑡 = −∇ 𝑉 ෨𝑋 t

h
ℎ

dt + 2𝑑𝐵𝑡

෠𝑋0
(0) ෠𝑋ℎ

(0) ෠𝑋𝑁ℎ
(0)

෠𝑋0
(1) ෠𝑋ℎ

(1) ෠𝑋𝑁ℎ
(1)

෠𝑋0
(𝐾) ෠𝑋ℎ

(𝐾) ෠𝑋𝑁ℎ
(𝐾)

…
.෡X𝑛h

(r)
− ෡X0

r
= −h ෍ ∇ V ෠𝑋ih

(𝑟−1)
 + 2B𝑛h

Discretization—in parallel

LMC: ෨𝑋0
෨𝑋ℎ

෨𝑋 𝑁ℎ
𝑑 ෨𝑋𝑡 = −∇ 𝑉 ෨𝑋 t

h
ℎ

dt + 2𝑑𝐵𝑡

Parallel-LMC:

𝑑 ෠𝑋𝑡
(𝑟)

= −∇ 𝑉 ෠𝑋 t
h

ℎ

(𝑟−1)
dt + 2𝑑𝐵𝑡

෠𝑋0
(0) ෠𝑋ℎ

(0) ෠𝑋𝑁ℎ
(0)

෠𝑋0
(1) ෠𝑋ℎ

(1) ෠𝑋𝑁ℎ
(1)

෠𝑋0
(𝐾) ෠𝑋ℎ

(𝐾) ෠𝑋𝑁ℎ
(𝐾)

…
.෡X n+1 h

(r)
− ෡X0

r
= −h ෍ ∇ V ෠𝑋ih

(𝑟−1)
 + 2B n+1 h

Analysis

𝐿𝑎𝑤 ෠𝑋𝑡
𝐾

≈𝐾𝐿 𝐿𝑎𝑤(𝑋𝑡) if ℎ ≃
1

𝑑
, K ≃ log 𝑑 , 𝑡 = 0.1

𝑑𝑖𝑠𝑡 ෠𝑋𝑡
𝑟

, 𝑋𝑡 ≤ 0.8 𝑑𝑖𝑠𝑡 ෠𝑋𝑡
𝑟−1

, 𝑋𝑡 +…

Parallel-LMC:

𝑑 ෠𝑋𝑡
(𝑟)

= −∇ 𝑉 ෠𝑋 t
h

ℎ

(𝑟−1)
dt + 2𝑑𝐵𝑡

෠𝑋0
(0) ෠𝑋ℎ

(0) ෠𝑋𝑁ℎ
(0)

෠𝑋0
(1) ෠𝑋ℎ

(1) ෠𝑋𝑁ℎ
(1)

෠𝑋0
(𝐾) ෠𝑋ℎ

(𝐾) ෠𝑋𝑁ℎ
(𝐾)

…
.෡X n+1 h

(r)
− ෡X0

r
= −h ෍ ∇ V ෠𝑋ih

(𝑟−1)
 + 2B n+1 h

Analysis

෠𝑋0
(0) ෠𝑋ℎ

(0) ෠𝑋𝑁ℎ
(0)

෠𝑋0
(1) ෠𝑋ℎ

(1) ෠𝑋𝑁ℎ
(1)

෠𝑋0
(𝐾) ෠𝑋ℎ

(𝐾) ෠𝑋𝑁ℎ
(𝐾)

…
.

𝐿𝑎𝑤 ෠𝑋𝑡
𝐾

≈𝐾𝐿 𝐿𝑎𝑤(𝑋𝑡) if

ℎ ≃
1

𝑑
, K ≃ log 𝑑 , 𝑡 = 0.1

Iterate 𝑁′ = log 𝑑 times gives

𝐿𝑎𝑤 ෠𝑋
𝑁′𝑡

𝐾
≈𝐾𝐿 𝐿𝑎𝑤 𝑋𝑁′𝑡 ≈𝐾𝐿 𝜋 ෠𝑋𝑁ℎ

(0) ෠𝑋(𝑁+1)ℎ
(0) ෠𝑋2𝑁ℎ

(0)

෠𝑋𝑁ℎ
(1) ෠𝑋(𝑁+1)ℎ

(1) ෠𝑋2𝑁ℎ
(1)

෠𝑋𝑁ℎ
(𝐾) ෠𝑋(𝑁+1)ℎ

(𝐾) ෠𝑋2𝑁ℎ
(𝐾)

…
.

…
.

Analysis

෠𝑋0
(0) ෠𝑋ℎ

(0) ෠𝑋𝑁ℎ
(0)

෠𝑋0
(1) ෠𝑋ℎ

(1) ෠𝑋𝑁ℎ
(1)

෠𝑋0
(𝐾) ෠𝑋ℎ

(𝐾) ෠𝑋𝑁ℎ
(𝐾)

…
.

𝐿𝑎𝑤 ෠𝑋𝑡
𝐾

≈𝐾𝐿 𝐿𝑎𝑤(𝑋𝑡) if

ℎ ≃
1

𝑑
, K ≃ log 𝑑 , 𝑡 = 0.1

Iterate 𝑁′ = log 𝑑 times gives

𝐿𝑎𝑤 ෠𝑋
𝑁′𝑡

𝐾
≈𝐾𝐿 𝐿𝑎𝑤 𝑋𝑁′𝑡 ≈𝐾𝐿 𝜋 ෠𝑋𝑁ℎ

(0) ෠𝑋(𝑁+1)ℎ
(0) ෠𝑋2𝑁ℎ

(0)

෠𝑋𝑁ℎ
(1) ෠𝑋(𝑁+1)ℎ

(1) ෠𝑋2𝑁ℎ
(1)

෠𝑋𝑁ℎ
(𝐾) ෠𝑋(𝑁+1)ℎ

(𝐾) ෠𝑋2𝑁ℎ
(𝐾)

…
.

…
.

Depth: 𝐾𝑁′ ≃ log2 𝑑
Work: 𝐾𝑁′𝑁 ≃ ෨𝑂(𝑑)

	Slide 1: Fast parallel sampling under isoperimetry
	Slide 2: Sampling
	Slide 3: Sampling
	Slide 4: Guarantee
	Slide 5: Measures of distance between distributions
	Slide 6: Parallel computing
	Slide 7: Our result: fast parallel sampler
	Slide 8: Our result: fast parallel sampler
	Slide 9: Prior works on parallel sampler
	Slide 10: Prior works on parallel sampler
	Slide 11: Prior works on parallel sampler
	Slide 12: Prior works on parallel sampler
	Slide 13: Application in discrete sampling
	Slide 14: Algorithm
	Slide 15: Continuous time diffusions
	Slide 16: Continuous time diffusions
	Slide 17: Discretization
	Slide 18: Discretization
	Slide 19: Discretization—in parallel
	Slide 20: Discretization—in parallel
	Slide 21: Analysis
	Slide 22: Analysis
	Slide 23: Analysis

