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Sampling

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV
Output: randomx ~Tst. T = m

 Fundamental task in statistics
 Many applications:

o Generative Al

o Inference
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Sampling

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV

Assumptions:
 Smooth potential: [|V?V||pp < B
* [soperimetry: mr satisfies log-Sobolev inequality (LSI)




Guarantee

Input: Distribution w = exp(=V(-)) over R%, oracle access to VV
Output: randomx ~fist. T =«

Measures of distance between distributions:
« KL (Kullback-Leibler): # ~4; m Dy (p,m) = E, log 2]
T

* Total variation: T o~py T Dry(p,m) =E,[I11 —7/pl]

. . 2
* W, (Wasserstein): T =y, T W; (p, ) = Egxyy~nl[IX = YI|]




Measures of distance between distributions

* KL (Kullback-Leibler): 7 =g; Dk (p, 1) = E, [log%]

* Total variation: T~py T Dry(p,m) = E,[I1 —m/pl]

* W, (Wasserstein): T~y T W, (p,7) = Ecx yy~ul|1X — Y||2]
Fact O: D’IZ"V < Dk, J
Fact 1: When 7 satisfies LSI, W2 < Dy,




Parallel computing

* The dimension d is large in modern big-data applications

* Modern GPUs are highly parallelizable

* Improve runtime via parallelization?
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Our result: fast parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV
Assumptions:

 Smooth potential: [|V?V||pp < B

* [soperimetry: r satisfies log-Sobolev inequality (LSI)

Results:

Guarantee Parallel depth Total work Algorithm
#(processors+oracle calls)

0(log? d) 0(d) Parallel-LMC

Fact O: DTV < DKL
Fact 1: When 7 satisfies LSI, W$ < Dy,




Our result: fast parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV
Assumptions:

 Smooth potential: [|V?V||pp < B

* [soperimetry: r satisfies log-Sobolev inequality (LSI)

Results:

Guarantee Parallel depth Total work Algorithm
#(processors+oracle calls)

0(log? d) 0(d) Parallel-LMC
TV 0(log? d) 0(Vd) Parallel -ULMC




Prior works on parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV

Assumptions:

 Smooth potential: [|V?V||pp < B

 [soperimetry—m-satish j j Implies
* Strong log-concavity: V4V = al > 0 : LSI

0(og®@d)  (O(/d) Randomized midpoint [Shen-Lee’19]




Prior works on parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV

Assumptions:
 Smooth potential: [|V?V||pp < B
* [soperimetry: r satisfies log-Sobolev inequality (LSI) Implies

LSI

e Strong log-concavity: V4V = al > 0

0(log? d) 0(d) Parallel-LMC This work

TV 0(log® d) O(Vad) Parallel -ULMC This work
W, 0(log®® d) 0(Vd) Randomized midpoint [Shen-Lee’19]




Prior works on parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV
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W, Randomized midpoint [Shen-Lee’19]




Prior works on parallel sampler

Input: Distribution = = exp(=V(-)) over R%, oracle access to VV

Assumptions:
 Smooth potential: [|V?V||pp < B
 [soperimetry—m-satish j j : Implies
e Strong log-concavity: V2V = al > Oc LSI
Parallel-LMC This work
TV Parallel -ULMC This work

W, Randomized midpoint [Shen-Lee’19]




Application in discrete sampling

Input: Distribution u over {+1}¢ € R¢%, oracle access to u

Output: random x ~ T st. T =,y @

|JAHLXVY-STOC23] reduces “nice” discrete u to continuous smooth

strongly log-concave
~r for continuous —— =7, for discrete
~, for continuous —-3< 1y for discrete, except for restricted cases

4




Algorithm

Fast parallel way to discretize continuous diffusions:
* Langevin diffusions

* Underdamped Langevin diffusions

- DDPM...




Continuous time diffusions

Langevin diffusion: dX, = —VV(X,dt +V2dB,
\ ) \ )

Drift Brownian
motion

Gradient descent: dX, = -VV(X)dt
\ )

|
Drift




Continuous time diffusions

Langevin diffusion: dX, = —VV(X,dt +V2dB,
\ ; \ ;

Drift Brownian
motion

Law(X;) =g, mift > logd

But, we can’t implement the continuous time process




Discretization

Langevin diffusion:

Langevin Monte-Carlo:
(LMC)

X(n+1)h o

dX, = —VV(Xdt + V2dB,
\ J \ )

Drift Brownian
Law(%;) motion

(@) ')
Xo Xp

Xon = -VV(X)h  + \/Z(B(n+1)h — Bp)



Discretization

Langevin diffusion: dX, = —VV(X,dt +V2dB,
\ ; \ ;

Drift Brownian
motion

Langevin Monte-Carlo: dX, = -VV ()’ZHh) dt +V2dB, e—e
(LMC) h Koo A
Law(X;) =g, mif T>logd
LaW(XT) ~KIL LaW(XT) ~kgL TU 1fT2 logd and h < % = N = % == ﬁ(d)



Discretization—in parallel

LMC: d)?t——VV( Eln )dt+\/§d3t
h

Parallel-LMC:

dX" = vy (X(’” 1)) dt + V2dB,
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Discretization—in parallel

LMC:  dX, = —VV( Eln )dt+\/_dBt
h

Parallel-LMC:

dx" = —vv (Xﬁhl)) dt + V2dB,
h

Xon =X = =h ) VV(XT™)  + V2Bauen

(n+1)h

O

<
= N

O

0)

)

=~

X

O

1)

\_
(D<)
>




Analysis

Law (%) =y, Law(X,) ifh = 2, K = logd ,t = 0.1
dist ()?gr),Xt) < 0.8 dist ()?t(r_l),Xt)+...
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Analysis
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Analysis

Law ()?t(K)) ~ . Law (X,) if
h==,K=logd,t =01

[terate N' = log d times gives

Law ()?182) ~xL Law(Xpyry) =g @

Depth: KN’ =~ log*d
Work: KN'N = 0(d)
/4

O o0 © |
5(0 5(0 5(0
XO Xh XNh
S0 | o) -1 |
XO Xh XNh
© ) b T
o (K o (K e S (K
i L (o
e d\r d\ """"" (_\é>
50 | [o(0) -(0)
Xnn | [ X+ XoNn
S0 | o S |
Xnn | [ X v+ XoNn
© ) b ®
5(K) | lo& 5 (K
XNR— 5%_N+1)h Xonm




	Slide 1: Fast parallel sampling under isoperimetry
	Slide 2: Sampling
	Slide 3: Sampling
	Slide 4: Guarantee
	Slide 5: Measures of distance between distributions
	Slide 6: Parallel computing
	Slide 7: Our result: fast parallel sampler
	Slide 8: Our result: fast parallel sampler
	Slide 9: Prior works on parallel sampler
	Slide 10: Prior works on parallel sampler
	Slide 11: Prior works on parallel sampler
	Slide 12: Prior works on parallel sampler
	Slide 13: Application in discrete sampling
	Slide 14: Algorithm
	Slide 15: Continuous time diffusions
	Slide 16: Continuous time diffusions
	Slide 17: Discretization
	Slide 18: Discretization
	Slide 19: Discretization—in parallel
	Slide 20: Discretization—in parallel
	Slide 21: Analysis
	Slide 22: Analysis
	Slide 23: Analysis

